AM 106/206: Applied Algebra Prof. Salil Vadhan
Lecture Notes 3

September 13, 2010

1 Relations

e Def: A relation on a set S is a set of ordered pairs of elements of S, i.e. R C SxS. (a,b) € R
often denoted aRb.

e Properties of Relations:

— R is reflezive if (a,a) € R for all a € S.
— R is symmetric if (a,b) € R = (b,a) € R for all a,b € S.
— R is transitive if (a,b) € R, (b,c) € R= (a,c) € R for all a,b,c € S.

— R is an equivalence relation if R is reflexive, symmetric, and transitive.
e Examples:

—<on7
—<onz
—=on7

— “is an ancestor of” on people.

e If R is an equivalence relation on S and a € S, then the equivalence class of a is the set
[alr ={b€ S:(a,b) € R}.

e Proposition: If R is an equivalence relation, then its equivalence classes form a partition of
S. That is, every element a € S is in exactly one equivalence class (namely [a]).
Proof: In book.

e The Congruence Relation: For a,b € Z, we define a =b (mod n) if a mod n = b mod n.
Equivalently, n|(b — a).

— The congruence relation modulo n is an equivalence relation on integers, and we’ll denote
the equivalence class of integer a by

[al, ={b€Z:b=a (modn)}={...,a—2n,a—n,a,a+n,a+2n,...} =[amod nj,.

This is known as the the congruence class of a modulo n.
— Q: How many distinct congruence classes are there modulo n?

— Example: The congruence classes modulo 3 are:



— We can do arithmetic on the equivalence classes. That is, we can define [a], + [b], to
be [a + b, and [a], - [b], to be [ab],. These are well-defined (i.e. if [a], = [d/], and
[b], = [b]n, then [a + b], = [a’ +¥],)) by the Homomorphic Properties of Mod.

2 Algorithms

Algorithms — step-by-step procedures for solving problems — have been a part of algebra
since its earliest days. In his Elements (c. 300 BC), Euclid described the Euclidean algorithm,
which remains to this current day (and we’ll see it below). The word algorithm is derived
from the name of the Persian mathematician al-Khwarizmi (c. 780), who is considered one
of the founders of algebra and gave the first general methods for solving linear and quadratic
equations.

As hinted in the previous lecture, we too will be interested in algorithmic issues. We will not
be satisfied to know that certain algebraic objects or solutions to equations exist, but we will
want to know whether there are general and efficient methods for constructing them.

A precise mathematical model for what constitutes an algorithm wasn’t given until the 1930’s
in the work of Church and Turing, who used it to show that certain well-defined mathematical
problems have no algorithm whatsoever. These mathematical models were a major inspiration
for the design of the first general-purpose computers in the 1940’s, and have remained relevant
to understanding the power of computers even has technology has changed.

It will be too much of a detour for us to discuss these formal models of algorithms. Instead,
we will informally introduce some of the basic terminology for discussing and comparing
algorithms and give some examples. If you're interested in reading more about algorithms, a
standard textbook is Cormen-Leiserson-Rivest-Stein (see syllabus).

2.1 Defining Algorithms

Example: Grade-School Addition. We illustrate the idea of an algorithm with the
simple example of grade-school addition, which takes two n-digit numbers z = x,_1---xg
and y = y,—1---yo (say in base 10) and computes their sum z = z,2,_1---20. As we all
know, the algorithm computes the digits z; of the result from the least significant (i = 0) to
the most significant (i = 1), keeping track of carry digits ¢; as it goes.

GradeSchoolAddition(x,—1 -+ Zo, Yn—1 - Yo):

— Let ¢g = 0.
— For i =0 to n—1, let ¢;112 be the base 10 representation of z; + y; + ¢;.
— Output ¢p2n_12n—9 " 20.

In general, an algorithm is an unambiguous, “step-by-step” procedure for transforming “in-
puts” to “outputs”. To understand this definition, we need to specify a few things:

— “inputs and outputs”: these are taken to be strings (finite sequences of symbols) over
some fixed, finite alphabet of symbols, e.g. {0,1,2,...,9}, {0,1}, {a,b,c,...,z}.



— “step”: operation on individual symbols, e.g. on individual digits.

— Can be made mathematically precise via any one of many equivalent models (Turing
Machine, RAM, ...).

Def: Algorithm A computes a function f if for every input string x, the output string, denoted
A(z), equals f(x).

— The same set of rules should work for all possible inputs (infinitely many).

— Example: Grade-school addition computes the function f(x#y) = z, where z is the
base-10 representation of the sum of the numbers for which x and y are the base-10
representations, and # is an additional alphabet symbol just used to separate the two
summands.

— Representation of input and output not too important. Any reasonable representation
can be easily converted into any other, e.g. base 10 vs. binary (=base 2) representation.

— Not all well-defined functions have algorithms! For example, there is no algorithm for
finding integer solutions to polynomial equations in many variables, e.g. 10wz?y —
32z 4 2wz? — --- = 0 (aka Diophantine Equations). On PS2, you'll see an algorithm for
linear Diophantine Equations. Computability Theory (covered in c¢s121) studies which
problems have algorithms and which do not.

2.2 Measuring Complexity

Some algorithms are better than others (even if they compute the same function). In particular,
we prefer algorithms that take fewer steps.

Def: Algorithm A runs in time T : N — RT if for every n € N and every input x of length n,
running A(x) takes at most T'(n) steps.

e n is length of input (e.g. in binary or decimal) of the input numbers, not the numbers
themselves. The length n of a positive integer x is n = [logy x| + 1.

e This definition captures worst-case analysis, meaning that we require that the running time
is at most T'(n) on all inputs of length n (even the “worst” ones).

The goals of most work on algorithms (cs124) and computational complexity theory (cs121,
cs221) are to:

e Find the “fastest” possible algorithm for a problem.

e Distinguish easy problems (ones that have “fast” algorithms) from hard problems (ones that
do not have any “fast” algorithms).

Typically, linear-time algorithms (e.g. T'(n) = 10n or grade-school addition) and quadratic
time algorithms (e.g. T(n) = 3n® + 60n, grade-school multiplication) are considered “fast”, but
exponential time (e.g. T(n) = (1.2)") are considered “slow”.

In order for our measure of running time to not depend too much on the specific model of
computation (hardware) or on the representation of the data (eg decimal vs. binary numbers),
we need to allow some slackness. In the next lecture, we’ll see convenient notation for ignoring
constant factors.



