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1 Error-Correcting Codes

Goal: encode data so that it can be recovered even after much of it has been corrupted.
— Useful for storage (hard disks, DVDs), communication (cell phone, satellite).

Def: An code is an injective mapping Enc : ¥ — " for some finite alphabet ¥, message
length k and block length n.

Def: For two strings z,y € X", we define their Hamming distance to be
D(z,y) = #{i € [n] : z; # yi}/n.

Def: A code Enc is t-error-correcting if there is a decoding function Dec : ¥ — 3F such that
for every message m € XF and every received word » € X" such that D(r, Enc(m)) < 6, we
have Dec(r) = m.

Example: repetition code n = k - ¢, Enc(m) = (m,m,m,...,m) is t-error-correcting if
£>2t+1.

Proposition: A code Enc is t-error-correcting if and only if
its minimum distance ming,xy, D(Enc(m), Enc(m’)) is greater than 2t.

Proof:

Note: the minimum distance only depends on the set of codewords C' = {Enc(m) : m €
Zk} C " and not on how we map elements of ¥* to £". Thus people often use the word
error-correcting code to refer to the set C' rather than the function Enc.

Goals: Construct error-correcting codes for arbitrarily large message lengths k£ and:

1. Maximize the relative decoding distance § = t/n, or equivalently the relative minimum
distance. Ideally, these should be constants independent of k, e.g. § = .1).

2. Maximize the rate p = k/n (ideally constant independent of k, e.g. p = .1).



3. Minimize the alphabet size |X| (ideally constant independent of k, e.g. ¥ = {0,1}).

4. Have efficient (e.g. polynomial time or even linear time) encoding and decoding algo-
rithms. (Note that decoding algorithm in proposition above is not efficient in general —
may require enumerating all strings at distance at most ¢ from 7.)

2 Reed—Solomon Codes

e Reed-Solomon Code: The g-ary Reed-Solomon code of message length k and blocklength n
isacodeRS : F’; — [y with alphabet > = [F,. We view the message m = (mo, ..., mg_1) € IF’;
as coefficients of a polynomial p,,(z) = Zf:_ol m;z’ of degree at most d = k— 1. The encoding
is RS(m) = (pm(a1),...,pm(on)) where o, ..., oy are fixed distinct elements of F,. (Thus
we need ¢ > n.)

e Proposition: The minimum distance of the Reed-Solomon code is n — k + 1, and thus it is
t-error-correcting for t = (n — k) /2.
Proof:

e Thus, taking e.g. n = 2k, we have constant rate (p = 1/2) and constant relative decoding
distance (6 = t/n = 1/4). The only downside is the nonconstant alphabet size (¢ > n), but
this can be improved by combining Reed—Solomon codes with other codes (see PS10).

e Efficiency of RS Codes: The encoding algorithm for Reed—Solomon codes is efficient. It
just requires evaluating a degree d polynomial at n points, which can be done with O(nd)
operations in F, using the naive algorithm, and O(nlogn) operations using Fast Fourier
Transforms over F,. Decoding is nontrivial. Given a received word r € Fy, we want to find

a message m € IE"; such that RS(m) = (pm(a1),...,pm(ayn)) has distance at most ¢ from

r = (p1,...,0n). This amounts to solving the following problem.

e Noisy Polynomial Interpolation: Given n pairs (a1, 51),...,(on,0n) € Fy x F, with
aq, ..., an distinct, we want to find all polynomials p of degree at most d = k£ — 1 such that
p(a;) = f; for at least s = n — ¢ values of i.

e Thm: The Noisy Polynomial Interpolation problem can be solved in polynomial time if

s > 2Vdn.

In particular, if n = 9k > 9d, we can efficiently decode from t = n — 2Vkn = n/3 errors
and still have constant relative rate (namely p = 1/9). On PS10, you will show how to im-
prove this and decode up to t = (n — k)/2 errors, the same as guaranteed (inefficiently) by
the minimum distance.

Proof:

Step 1: Find a nonzero bivariate polynomial Q(x,y) such that (a) Q(«;,3;) = 0 for all ¢,
and (b) the degree of @ in x is at most v/dn and the degree of @ in y is at most y/n/d.



You're showing how to do this on Problem Set 9.

Step 2: Factor @ into irreducible polynomials, look for any factors of the form y — p(x), and
output all such p that appear.

— Observe that if p(z) is a polynomial of degree d such that p(a;) = 3; for at least s
values of i, then the univariate polynomial S(z) = Q(z,p(x)) has at least s roots
(namely the values of «; such that p(a;) = ;). The degree of S(z) is at most
Vidn +d-+/n/d = 2V/dn. Since s > 2v/dn, S(x) must be the zero polynomial.

— The fact that Q(z,p(x)) = 0 means that p(x) is a root of @, considering @ as
polynomial in y with coefficients that are polynomials in y. That is, we consider
Q(z,y) as an element of the polynomial ring R[y], where R = F4[z]. We know
that for any integral domain R, if g(y) € R[y] has a root o € R, then y — «
divides ¢(y) in R[y]. Taking a = p(z),we get that y — p(z) divides Q(z,y). Thus
it will appear when we factor Q(z,y). (Multivariate polynomial rings F[x,y] have
unique factorization, and this factorization can be done in polynomial time for most
common fields, including finite fields.)

e Reed—Solomon Codes and versions of the above decoding algorithm are widely used in prac-
tice, e.g. on CDs and in satellite communications.



