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1 Error-Correcting Codes

• Goal: encode data so that it can be recovered even after much of it has been corrupted.

– Useful for storage (hard disks, DVDs), communication (cell phone, satellite).

• Def: An code is an injective mapping Enc : Σk → Σn for some finite alphabet Σ, message
length k and block length n.

• Def: For two strings x, y ∈ Σn, we define their Hamming distance to be

D(x, y) = #{i ∈ [n] : xi 6= yi}/n.

• Def: A code Enc is t-error-correcting if there is a decoding function Dec : Σn → Σk such that
for every message m ∈ Σk and every received word r ∈ Σn such that D(r,Enc(m)) ≤ δ, we
have Dec(r) = m.

• Example: repetition code n = k · `, Enc(m) = (m,m,m, . . . ,m) is t-error-correcting if
` ≥ 2t+ 1.

• Proposition: A code Enc is t-error-correcting if and only if
its minimum distance minm 6=m′ D(Enc(m),Enc(m′)) is greater than 2t.

Proof:

Note: the minimum distance only depends on the set of codewords C = {Enc(m) : m ∈
Σk} ⊆ Σn and not on how we map elements of Σk to Σn. Thus people often use the word
error-correcting code to refer to the set C rather than the function Enc.

• Goals: Construct error-correcting codes for arbitrarily large message lengths k and:

1. Maximize the relative decoding distance δ = t/n, or equivalently the relative minimum
distance. Ideally, these should be constants independent of k, e.g. δ = .1).

2. Maximize the rate ρ = k/n (ideally constant independent of k, e.g. ρ = .1).
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3. Minimize the alphabet size |Σ| (ideally constant independent of k, e.g. Σ = {0, 1}).
4. Have efficient (e.g. polynomial time or even linear time) encoding and decoding algo-

rithms. (Note that decoding algorithm in proposition above is not efficient in general —
may require enumerating all strings at distance at most t from r.)

2 Reed–Solomon Codes

• Reed-Solomon Code: The q-ary Reed–Solomon code of message length k and blocklength n
is a code RS : Fk

q → Fn
q with alphabet Σ = Fq. We view the message m = (m0, . . . ,mk−1) ∈ Fk

q

as coefficients of a polynomial pm(x) =
∑k−1

i=0 mix
i of degree at most d = k−1. The encoding

is RS(m) = (pm(α1), . . . , pm(αn)) where α1, . . . , αn are fixed distinct elements of Fq. (Thus
we need q ≥ n.)

• Proposition: The minimum distance of the Reed-Solomon code is n− k + 1, and thus it is
t-error-correcting for t = (n− k)/2.
Proof:

• Thus, taking e.g. n = 2k, we have constant rate (ρ = 1/2) and constant relative decoding
distance (δ = t/n = 1/4). The only downside is the nonconstant alphabet size (q ≥ n), but
this can be improved by combining Reed–Solomon codes with other codes (see PS10).

• Efficiency of RS Codes: The encoding algorithm for Reed–Solomon codes is efficient. It
just requires evaluating a degree d polynomial at n points, which can be done with O(nd)
operations in Fq using the naive algorithm, and O(n log n) operations using Fast Fourier
Transforms over Fq. Decoding is nontrivial. Given a received word r ∈ Fn

q , we want to find
a message m ∈ Fk

q such that RS(m) = (pm(α1), . . . , pm(αn)) has distance at most t from
r = (β1, . . . , βn). This amounts to solving the following problem.

• Noisy Polynomial Interpolation: Given n pairs (α1, β1), . . . , (αn, βn) ∈ Fq × Fq with
α1, . . . , αn distinct, we want to find all polynomials p of degree at most d = k − 1 such that
p(αi) = βi for at least s = n− t values of i.

• Thm: The Noisy Polynomial Interpolation problem can be solved in polynomial time if
s > 2

√
dn.

In particular, if n = 9k > 9d, we can efficiently decode from t = n − 2
√
kn = n/3 errors

and still have constant relative rate (namely ρ = 1/9). On PS10, you will show how to im-
prove this and decode up to t = (n − k)/2 errors, the same as guaranteed (inefficiently) by
the minimum distance.

Proof:

Step 1: Find a nonzero bivariate polynomial Q(x, y) such that (a) Q(αi, βi) = 0 for all i,
and (b) the degree of Q in x is at most

√
dn and the degree of Q in y is at most

√
n/d.
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You’re showing how to do this on Problem Set 9.

Step 2: Factor Q into irreducible polynomials, look for any factors of the form y− p(x), and
output all such p that appear.

– Observe that if p(x) is a polynomial of degree d such that p(αi) = βi for at least s
values of i, then the univariate polynomial S(x) = Q(x, p(x)) has at least s roots
(namely the values of αi such that p(αi) = βi). The degree of S(x) is at most√
dn+ d ·

√
n/d = 2

√
dn. Since s > 2

√
dn, S(x) must be the zero polynomial.

– The fact that Q(x, p(x)) = 0 means that p(x) is a root of Q, considering Q as
polynomial in y with coefficients that are polynomials in y. That is, we consider
Q(x, y) as an element of the polynomial ring R[y], where R = Fq[x]. We know
that for any integral domain R, if g(y) ∈ R[y] has a root α ∈ R, then y − α
divides g(y) in R[y]. Taking α = p(x),we get that y − p(x) divides Q(x, y). Thus
it will appear when we factor Q(x, y). (Multivariate polynomial rings F [x, y] have
unique factorization, and this factorization can be done in polynomial time for most
common fields, including finite fields.)

• Reed–Solomon Codes and versions of the above decoding algorithm are widely used in prac-
tice, e.g. on CDs and in satellite communications.
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