1 Cosets

- Reading: Gallian Ch. 7

- **Def:** For a group G, $H \leq G$, and $a \in G$, the *left coset of H containing a* is the set $aH = \{ah : h \in H\}$. Similarly, the *right coset of H containing a* is $Ha = \{ha : h \in H\}$.

- **Examples:**
 - $G = \mathbb{Z}$, $H = 3\mathbb{Z} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$. (Note: $3\mathbb{Z}$ is *not* the left coset of \mathbb{Z} containing 3. Why not?)
 - $G = S_3$, $H = \{\varepsilon, (23)\}$.
 - $G = \mathbb{R}^3$, $H = \{(x, y, z) : z = 0\}$.

- **Thm:** If $H \leq G$, then the cosets of H form a partition of G into disjoint subsets, each of size $|H|$.

Proof:

1. Every element $a \in G$ is contained in at least one coset:

2. Every element $a \in G$ is contained in only one coset, i.e. if $a \in bH$, then $aH = bH$.

3. The size of each coset aH is the same as the size of H.
• Another View: define a relation \(R_H \) on \(G \) by \(a \sim b \) iff \(a^{-1}b \in H \) \((\iff b \in aH \iff aH = bH)\). This is an equivalence relation, whose equivalence classes are exactly the cosets of \(H \). That is, \([a]_{R_H} = aH\).

 – Example: On \(\mathbb{Z} \), \(a \equiv b \pmod{n} \) iff \(a - b \in n\mathbb{Z} \). The congruence classes modulo \(n \) are exactly the cosets of \(n\mathbb{Z} \): \([a]_n = a + n\mathbb{Z}\).

2 Lagrange’s Theorem and Related Results

• Def: For a group \(G \) and \(H \leq G \), the index of \(H \) in \(G \) \([G : H]\) is the number of distinct left cosets of \(H \) in \(G \).

• Corollaries of Theorem above: For a finite group \(G \):

 – If \(H \leq G \), then \([G : H] = |G|/|H|\).

 – (Lagrange’s Thm) The order of a subgroup divides the order of the group. That is, if \(H \leq G \), then \(|H| \) divides \(|G|\).

 – The order of an element divides the order of the group. That is, if \(a \in G \), then the order of \(a \) divides \(|G|\).

 – Every group of prime order is cyclic. That is, if \(|G| \) is prime, then \(G \) is cyclic.

 – \(a^{|G|} = e \) for every \(a \in G \).

 – (Fermat’s Little Thm) \(a^p \equiv a \pmod{p} \) for every \(a \in \mathbb{Z} \) and prime \(p \).

 * Starting point for all (randomized and deterministic) polynomial-time primality testing algorithms!
3 Orbits and Stabilizers

• **Def:** For a permutation group $G \leq \text{Sym}(S)$ and a point $s \in S$,

 - The *orbit* of s under G is $\text{orb}_G(s) = \{ \varphi(s) : \varphi \in G \}$,
 - The *stabilizer* of s in G is $\text{stab}_G(s) = \{ \varphi \in G : \varphi(s) = s \}$.

• **Examples:** $G = D_5 \leq \text{Sym}(\mathbb{R}^2)$.

 - $s =$ center of pentagon.

 - $s =$ non-center point on vertical axis.

 - $s =$ point 5° clockwise from vertical axis.

Reading: Gallian Chapter 7

• **Defs of** $\text{stab}_G(s)$, $\text{orb}_G(s)$ **for** $G \leq \text{Sym}(S)$ and $s \in S$.

Orbit-Stabilizer Theorem (Thm. 7.3): $|\text{orb}_G(s)| = [G : \text{stab}_G(s)]$.

• **Orbit–Stabilizer Thm follows from:**

 Lemma: For $\varphi, \psi \in G$, $\varphi(s) = \psi(s)$ iff $\varphi\text{stab}_G(s) = \psi\text{stab}_G(s)$.

 Thus distinct points $\varphi(s)$ in the orbit are in one-to-one correspondence with distinct cosets $\varphi\text{stab}_G(s)$.

Proof: