AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 10

October 13, 2010

1 Cosets

- Reading: Gallian Ch. 7
- Def: For a group $G, H \leq G$, and $a \in G$, the left coset of H containing a is the set $aH = \{ah : h \in H\}$. Similarly, the right coset of H containing a is $Ha = \{ha : h \in H\}$.
- Examples:
 - $-G = \mathbb{Z}, H = 3\mathbb{Z} = \{\dots, -6, -3, 0, 3, 6, \dots\}$. (Note: $3\mathbb{Z}$ is *not* the left coset of \mathbb{Z} containing 3. Why not?)

 $-G = S_3, H = \{\varepsilon, (23)\}.$

$$- G = \mathbb{R}^3, H = \{(x, y, z) : z = 0\}.$$

- Thm: If H ≤ G, then the cosets of H form a partition of G into disjoint subsets, each of size |H|.
 Proof:
 - 1. Every element $a \in G$ is contained in at least one coset:
 - 2. Every element $a \in G$ is contained in only one coset, i.e. if $a \in bH$, then aH = bH.
 - 3. The size of each coset aH is the same as the size of H.

• A picture:

- Another View: define a relation R_H on G by $a \sim b$ iff $a^{-1}b \in H$ ($\Leftrightarrow b \in aH \Leftrightarrow aH = bH$). This is an equivalence relation, whose equivalence classes are exactly the cosets of H. That is, $[a]_{R_H} = aH$.
 - Example: On \mathbb{Z} , $a \equiv b \pmod{n}$ iff $a b \in n\mathbb{Z}$. The congruence classes modulo n are exactly the cosets of $n\mathbb{Z}$: $[a]_n = a + n\mathbb{Z}$.

2 Lagrange's Theorem and Related Results

- **Def:** For a group G and $H \leq G$, the *index of* H *in* G [G : H] is the number of distinct left cosets of H in G.
- Corollaries of Theorem above: For a finite group G:
 - If $H \le G$, then [G:H] = |G|/|H|.
 - (Lagrange's Thm) The order of a subgroup divides the order of the group. That is, if $H \leq G$, then |H| divides |G|.
 - The order of an element divides the order of the group. That is, if $a \in G$, then the order of a divides |G|.
 - Every group of prime order is cyclic. That is, if |G| is prime, then G is cyclic.
 - $-a^{|G|} = e$ for every $a \in G$.
 - (Fermat's Little Thm) $a^p \equiv a \mod p$ for every $a \in \mathbb{Z}$ and prime p.
 - * Starting point for all (randomized and deterministic) polynomial-time primality testing algorithms!

3 Orbits and Stabilizers

- **Def:** For a permutation group $G \leq Sym(S)$ and a point $s \in S$,
 - The orbit of s under G is $\operatorname{orb}_G(s) = \{\varphi(s) : \varphi \in G\},\$
 - The stabilizer of s in G is $\operatorname{stab}_G(s) = \{\varphi \in G : \varphi(s) = s\}.$
- Examples: $G = D_5 \leq Sym(\mathbb{R}^2)$.
 - -s =center of pentagon.

-s = non-center point on vertical axis.

 $-s = \text{point } 5^{\circ} \text{ clockwise from vertical axis.}$

Reading: Gallian Chapter 7

- Defs of $\operatorname{stab}_G(s)$, $\operatorname{orb}_G(s)$ for $G \leq Sym(S)$ and $s \in S$.
- Orbit-Stabilizer Theorem (Thm. 7.3): $|\operatorname{orb}_G(s)| = [G : \operatorname{stab}_G(s)].$
- Orbit-Stabilizer Thm follows from:
 Lemma: For φ, ψ ∈ G, φ(s) = ψ(s) iff φstab_G(s) = ψstab_G(s).
 Thus distinct points φ(s) in the orbit are in one-to-one correspondence with distinct cosets φstab_G(s).

Proof: