Prof. Salil Vadhan

Lecture Notes 19
November 17, 2010

1 Extension Fields

- Reading: Parts of Ch. 20, 21.
- Today we will study how to build "larger" fields from smaller fields.

Def: For fields E, F, E is an extension field of F iff F is (isomorphic to) a subfield of E.

- We will focus on starting with a field F and adjoining a single element a to F. Of course, once we add an element a, we must add other elements to have closure under addition and multiplication and to have multiplicative inverses. For example, we must add the powers of a, linear combinations of those powers, ratios of elements, etc.
- We have already seen one way of adding an element: adding a new variable x to get the polynomial ring $F[x]$ and then reducing modulo an irreducible polynomial:

Thm 20.1: If $p(x) \in F[x]$ is an irreducible polynomial, then $F[x] /\langle p(x)\rangle$ is an extension field of F. Moreover p has a root in $F[x] /\langle p(x)\rangle$, namely x itself (or, more precisely, the coset $x+\langle p(x)\rangle)$.

- Example:

$-\mathbb{Z}_{2}[x] /\left\langle x^{3}+x^{2}+1\right\rangle$.

- How to compute inverses in $F[x] /\langle p(x)\rangle$?
- We can also add a new element x that doesn't satisfy any polynomial equation over F :

Def: For a field F, the field $F(x)$ of rational functions over F consists of ratios $f(x) / g(x)$ of polynomials $f(x), g(x) \in F[x]$ such that $g(x) \neq 0$, where we treat two ratios $f_{1}(x) / g_{1}(x)$ and $f_{2}(x) / g_{2}(x)$ as equal iff $f_{1}(x) g_{2}(x)=f_{2}(x) g_{1}(x)$, and addition and multiplication is done as you would expect.

- It can be verified that $F(x)$ a field.
- More generally we can take any integral domain R (like $F[x]$ or \mathbb{Z}) and obtain a "field of quotients" that contains R (like $F(x)$ or \mathbb{Q}).
- If we already have a field E that contains F, then we can also adjoin any element of E to F :

Def: Let E be an extension field of F, and $a \in E$. Then $F(a)$ is defined to be the smallest subfield of E containing F and a, namely $F(a)=\{f(a) / g(a): f, g \in F[x], g(a) \neq 0\}$. (Can be verified that this is a field.)

- The use of parenthesis in $F(a)$ indicates that we are looking at all rational functions $f(x) / g(x)$ applied to a in contrast to $F[a]=\{f(a): f \in F[x]\}$, where we only look at polynomial functions applied to a. Using rational functions ensures that we get multiplicative inverses, though, as we'll see, in some cases it is not necessary.
- Example: $\mathbb{Q}(\sqrt{5})$
- Now we will see that this method of getting extension fields (adjoining a specific element a) is equivalent to the previous ones (where we adjoined an abstract element x). Whether we get something of the form $F(x)$ or of the form $F[x] /\langle p(x)\rangle$ depends on properties of the element a.
- Def: Let E be an extension field of $F, a \in E$. We say that a is algebraic over F if it is the root of a nonzero polynomial in $F[x]$. Otherwise we say that a is transcendental over F. If a is algebraic, the minimal polynomial for a is the monic polynomial of lowest degree in $F[x]$ that has a as a root.

- Examples and Nonexamples:

$-\sqrt{5}$ over \mathbb{Q}.
$-i$ over \mathbb{R}.
$-\pi$ over \mathbb{Q}.

- Thm 21.1: Let E be an extension field of F and let $a \in E$ be transcendental over F. Then $F(a) \cong F(x)$. Moreover the isomorphism is the identity on F and takes x to a.

Proof: in Gallian

- Thms 20.3,21.1: Let E be an extension field of F, and let $a \in E$ be algebraic over F. Then:

1. The minimal polynomial $p(x)$ for a over F is irreducible.
2. $F(a) \cong F[x] /\langle p(x)\rangle$. (Moreover, the isomorphism is the identity on F and takes the (coset containing) x to a.)
3. $F(a)=\left\{c_{0}+c_{1} a+c_{2} a^{2}+\cdots+c_{n-1} a^{n-1}: c_{0}, c_{1}, \ldots, c_{n-1} \in F\right\}$, where $n=\operatorname{deg}(p)$.

Proof:

- Corollary: If $a \in E$ and $a^{\prime} \in E^{\prime}$ have the same minimal polynomial, then $F(a) \cong F\left(a^{\prime}\right)$. (Moreover, the isomorphism is the identity on F and takes a to a^{\prime}.)

- Examples:

$-\mathbb{R}(i) \cong \mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{R}(-i)$.
$-\mathbb{Q}(\sqrt{5}) \cong \mathbb{Q}[x] /\left\langle x^{2}-5\right\rangle \cong \mathbb{Q}(-\sqrt{5})$.

2 Splitting Fields

- Def: Let E be an extension field of F and $f(x) \in F[x]$. We say that $f(x)$ splits in E iff $f(x)$ can be factored into linear factors in $E[x]$. That is, $f(x)=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right)$ for $c, a_{1}, \ldots, a_{k} \in E$ (possibly with repetitions). E is a splitting field for $f(x)$ over F iff $f(x)$ splits in E but in no proper subfield E^{\prime} such that $F \subseteq E^{\prime} \subsetneq E$.
- Thm 20.2+: For every polynomial $f(x) \in F[x]$, there exists a splitting field E for $f(x)$ over F. Moreover every two splitting fields for $f(x)$ are isomorphic.

Proof idea: (details in book)

- Example: Splitting field of $x^{8}-1$ over \mathbb{Q}.

