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1 Extension Fields

• Reading: Parts of Ch. 20, 21.

• Today we will study how to build “larger” fields from smaller fields.

Def: For fields E,F , E is an extension field of F iff F is (isomorphic to) a subfield of E.

• We will focus on starting with a field F and adjoining a single element a to F . Of course,
once we add an element a, we must add other elements to have closure under addition and
multiplication and to have multiplicative inverses. For example, we must add the powers of
a, linear combinations of those powers, ratios of elements, etc.

• We have already seen one way of adding an element: adding a new variable x to get the
polynomial ring F [x] and then reducing modulo an irreducible polynomial:

Thm 20.1: If p(x) ∈ F [x] is an irreducible polynomial, then F [x]/〈p(x)〉 is an extension field
of F . Moreover p has a root in F [x]/〈p(x)〉, namely x itself (or, more precisely, the coset
x+ 〈p(x)〉).

• Example:

– Z2[x]/〈x3 + x2 + 1〉.

– How to compute inverses in F [x]/〈p(x)〉?

• We can also add a new element x that doesn’t satisfy any polynomial equation over F :

Def: For a field F , the field F (x) of rational functions over F consists of ratios f(x)/g(x) of
polynomials f(x), g(x) ∈ F [x] such that g(x) 6= 0, where we treat two ratios f1(x)/g1(x) and
f2(x)/g2(x) as equal iff f1(x)g2(x) = f2(x)g1(x), and addition and multiplication is done as
you would expect.

– It can be verified that F (x) a field.
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– More generally we can take any integral domain R (like F [x] or Z) and obtain a “field
of quotients” that contains R (like F (x) or Q).

• If we already have a field E that contains F , then we can also adjoin any element of E to F :

Def: Let E be an extension field of F , and a ∈ E. Then F (a) is defined to be the smallest
subfield of E containing F and a, namely F (a) = {f(a)/g(a) : f, g ∈ F [x], g(a) 6= 0}. (Can
be verified that this is a field.)

– The use of parenthesis in F (a) indicates that we are looking at all rational functions
f(x)/g(x) applied to a in contrast to F [a] = {f(a) : f ∈ F [x]}, where we only look
at polynomial functions applied to a . Using rational functions ensures that we get
multiplicative inverses, though, as we’ll see, in some cases it is not necessary.

– Example: Q(
√

5)

• Now we will see that this method of getting extension fields (adjoining a specific element a) is
equivalent to the previous ones (where we adjoined an abstract element x). Whether we get
something of the form F (x) or of the form F [x]/〈p(x)〉 depends on properties of the element
a.

• Def: Let E be an extension field of F , a ∈ E. We say that a is algebraic over F if it is the
root of a nonzero polynomial in F [x]. Otherwise we say that a is transcendental over F . If
a is algebraic, the minimal polynomial for a is the monic polynomial of lowest degree in F [x]
that has a as a root.

• Examples and Nonexamples:

–
√

5 over Q.

– i over R.

– π over Q.

• Thm 21.1: Let E be an extension field of F and let a ∈ E be transcendental over F . Then
F (a) ∼= F (x). Moreover the isomorphism is the identity on F and takes x to a.

Proof: in Gallian
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• Thms 20.3,21.1: Let E be an extension field of F , and let a ∈ E be algebraic over F . Then:

1. The minimal polynomial p(x) for a over F is irreducible.

2. F (a) ∼= F [x]/〈p(x)〉. (Moreover, the isomorphism is the identity on F and takes the
(coset containing) x to a.)

3. F (a) = {c0 + c1a+ c2a
2 + · · ·+ cn−1a

n−1 : c0, c1, . . . , cn−1 ∈ F}, where n = deg(p).

Proof:

• Corollary: If a ∈ E and a′ ∈ E′ have the same minimal polynomial, then F (a) ∼= F (a′).
(Moreover, the isomorphism is the identity on F and takes a to a′.)

• Examples:

– R(i) ∼= R[x]/〈x2 + 1〉 ∼= R(−i).

– Q(
√

5) ∼= Q[x]/〈x2 − 5〉 ∼= Q(−
√

5).

2 Splitting Fields

• Def: Let E be an extension field of F and f(x) ∈ F [x]. We say that f(x) splits in E iff f(x)
can be factored into linear factors in E[x]. That is, f(x) = c(x− a1)(x− a2) · · · (x− ak) for
c, a1, . . . , ak ∈ E (possibly with repetitions). E is a splitting field for f(x) over F iff f(x)
splits in E but in no proper subfield E′ such that F ⊆ E′ ( E.

• Thm 20.2+: For every polynomial f(x) ∈ F [x], there exists a splitting field E for f(x) over
F . Moreover every two splitting fields for f(x) are isomorphic.

Proof idea: (details in book)

• Example: Splitting field of x8 − 1 over Q.
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