AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 21

November 30, 2010

1 Finite Fields

- Reading: Gallian Ch. 22
- Recall (ps7): only possible sizes for finite fields are prime powers p^n .
- Thm 22.1 (all the finite fields): For every prime p and $n \in \mathbb{N}$,
 - 1. (Existence) There exists a finite field of order p^n , denoted \mathbb{F}_{p^n} or $GF(p^n)$ (for "Galois field").
 - 2. (Uniqueness) Every two finite fields of order p^n are isomorphic.

Proof: Let F be splitting field of $f(x) = x^{p^n} - x$ over \mathbb{Z}_p , F' = roots of f(x) in F.

- Claim 1: F' is a subfield of F (and hence F' = F by def of splitting field).
- Claim 2: the roots of f(x) are all distinct in F.
- Claim 3: every finite field of order p^n is a splitting field of f(x).

• Thm 22.2 (group structure):

- 1. The additive group of \mathbb{F}_{p^n} is isomorphic to \mathbb{Z}_p^n .
- 2. The multiplicative group $\mathbb{F}_{p^n}^*$ is cyclic. (A generator of the multiplicative group is called a *primitive element* of \mathbb{F}_{p^n} .)

Proof:

1.

2.

• Corollaries:

- 1. For every n, there is an element of \mathbb{F}_{p^n} of degree n over \mathbb{Z}_p .
- 2. For every n, there is an irreducible polynomial of degree n in $\mathbb{Z}_p[x]$.

Proof:

Thus, instead of constructing \mathbb{F}_{p^n} as a splitting field by adjoining several roots, we can take a *single* irreducible polynomial f(x) of degree n and $\mathbb{Z}_p[x]/\langle f(x)\rangle \cong \mathbb{F}_{p^n}$.

• Examples:

- 1. $\mathbb{F}_{7^3} \cong \mathbb{Z}_7[x]/\langle x^3+2\rangle$.
- 2. $\mathbb{F}_{7^3} \cong \mathbb{Z}_7[x]/\langle x^3 + x^2 + 1 \rangle$.
- 3. Adding and multiplying $x^2 + 5$ and 3x + 2 in above representations of \mathbb{F}_{7^3} :

• Computational Issues:

– Computations in the finite field \mathbb{F}_{p^n} can be done efficiently given the prime p and an irreducible polynomial f(x) over \mathbb{Z}_p of degree n.

Addition:

Multiplication:

Inverses:

- How to find p and f(x)?
 - 1. Choose randomly and test for primality/irreducibility (which can be done in polynomial time). Primes and irreducible polynomials have noticeable density (PS10), so this doesn't take too many trials.
 - 2. Use a small value of p (e.g. p=2) and known explicit irreducible polynomials, e.g. $f(x)=x^{2\cdot 3^\ell}+x^{3^\ell}+1.$