AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 16

November 3, 2010

1 Ideals

• Reading: Gallian Ch. 14

• Goal: ring-theoretic analogue of normal subgroup, a set of elements we can "mod out" (set to zero) to get a factor ring.

– Normal subgroups: since $a\varepsilon a^{-1} = \varepsilon$ in every group, we need $aNa^{-1} \subseteq N$ for N to work as an identity element in a factor group G/N.

- Ideals: since $a \cdot 0 = 0$ in every ring, we need $aI \subseteq I$ for I to work as an identity element in a factor ring R/I.

• **Def:** Let R be a commutative ring with unity. A set $I \subseteq R$ is an *ideal* iff (a) I is a subgroup of R under addition, and (b) for every $a \in I$ and $r \in R$, we have $ar \in I$.

- Contrast with a subring I, where we would only require condition (b) to hold when $r \in I$.

• Thm 14.2 (Factor Rings): If R is a commutative ring with unity and $I \subseteq R$ is an ideal, then the additive cosets of I form a ring, denoted R/I, under the operations (a+I)+(b+I)=(a+b)+I and (a+I)(b+I)=ab+I

• Examples and Non-examples:

- $\{0\}.$
- -R.
- Ideals in \mathbb{Z} .
- $R = \mathbb{R}[x], I = \{p(x) : p(11) = 0\}.$

$$- R = \mathbb{R}[x], I = \{p(x) : p(11) = 5\}.$$

$$-R = \mathbb{C}[x], I = \mathbb{Q}[x].$$

- Ideals in a field.
- Principal ideal generated by $a \in R$: $\langle a \rangle = \{ra : r \in R\}$. (Which of above ideals are principal?)
- Ideal generated by a_1, \ldots, a_k : $\langle a_1, \ldots, a_k \rangle = \{r_1 a_1 + \cdots + r_k a_k : r_1, \ldots, r_k \in R\}$.

$$-R=\mathbb{Z}, I=\langle m,n\rangle.$$

$$-R = \mathbb{Q}[x], I = \langle x^2 - 7, x \rangle.$$

$$-\ R=\mathbb{Z}[x],\,I=\langle 17,x\rangle.$$

• Theorem 14.4: Let R be a commutative ring with unity and I an ideal in R. Then R/I is a field if and only if I is a maximal ideal. That is, $I \neq R$ but I is not contained in any ideal of R other than I and R.

Proof:

• Examples:

- Maximal Ideals in \mathbb{Z} :
- $-\langle 17, x \rangle$ vs. $\langle 17 \rangle$ and $\langle x \rangle$ in $\mathbb{Z}[x]$.
- There is also a characterization of when R/I is an integral domain (namely, when I is a "prime ideal") but we won't cover it.

2 Homomorphisms

- Reading: Gallian Ch. 15.
- **Def:** A mapping $\varphi: R \to S$ between two rings is a *ring homomorphism* iff $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$. If φ is a bijection (one-to-one and onto), we call φ a *ring isomorphism* and write $R \cong S$.
- Ring Analogues of Familiar Facts about Homomorphisms:
 - The image $\operatorname{Im}(\varphi) \stackrel{\text{def}}{=} \varphi(R) = \{ \varphi(r) : r \in R \}$ is a subring of S.
 - The $kernal \operatorname{Ker}(\varphi) \stackrel{\text{def}}{=} = \{ r \in R : \varphi(r) = 0 \}$ is an ideal of R.
 - $-R/\mathrm{Ker}(\varphi) \cong \mathrm{Im}(\varphi).$
 - φ is one-to-one (and thus establishes an isomorphism between R and $\mathrm{Im}(\varphi)$) iff $\mathrm{Ker}(\varphi)=\{0\}.$
- Examples and non-examples:

$$-\varphi: \mathbb{Z} \to \mathbb{Z}_n, \, \varphi(x) = x \bmod n.$$

$$-\varphi: \mathbb{Z} \to \mathbb{Z}_m \times \mathbb{Z}_n, \ \varphi(x) = (x \bmod m, x \bmod n).$$

$$-\varphi: R \to R/I, \varphi(a) = a + I.$$

$$-\varphi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}[i], \ \varphi(a,b) = a + bi.$$

$$-\varphi: M_n(\mathbb{R}) \to \mathbb{R}, \ \varphi(M) = \det M.$$

$$-\varphi: \mathbb{R}[x] \to \mathbb{Q}, \ \varphi(p) = p(11).$$

$$- \varphi : \mathbb{R}[x] \to \mathbb{C}, \ \varphi(p) = p(i).$$

$$-\varphi:\mathbb{C}\to\mathbb{C},\ \varphi(a+bi)=a-bi.$$

 $-\varphi_1\circ\varphi_2$, where φ_1 , φ_2 ring homomorphisms.

$$- \varphi : \mathbb{Z}[x] \to \mathbb{Z}_{17}$$
, where $\varphi(p) = p(0) \mod 17$.

$$-\varphi:\mathbb{Z}\to R,\, \varphi(n)=1+1+\cdots+1\,\,(n\,\,\mathrm{times}).$$