Reading: Gallian Chapter 6

1 Isomorphisms

- Q: When are two groups the "same" up to the names of elements?

- Examples:

$-\mathbb{Z}_{2}$ and the group $G=\{x, y\}$ with the following Cayley table:

$$
\begin{array}{c|ll}
\circ & x & y \\
\hline x & y & x \\
y & x & y
\end{array} .
$$

- Any infinite cyclic group and \mathbb{Z}.
- Any cyclic group of order n and \mathbb{Z}_{n}.
- n-dimensional real vector space and \mathbb{R}^{n}
- Def: For groups G and H, an isomorphism from G to H is a mapping $\varphi: G \rightarrow H$ such that

1. φ is a bijection (i.e. one-to-one and onto).
2. for every $a, b \in G, \varphi(a b)=\varphi(a) \varphi(b)$. (Note that $a b$ is computed using the operation of G, and $\varphi(a) \varphi(b)$ using the operation of H.)

If there exists an isomorphism from G to H, we say that G and H are isomorphic and write $G \cong H$.

- Comments
- Gallian writes $G \approx H$, but $G \cong H$ is more standard notation than $G \approx H$.
- Isomorphism is an equivalence relation on groups.

- More Examples

$-S_{4} \cong D_{8}$?

$$
-S_{4} \cong \mathbb{Z}_{24} \text { ? }
$$

$-(\mathbb{R},+) \cong\left(\mathbb{R}^{+}, \cdot\right) ?$

- Thm: If A and B are the same size (i.e. there is a bijection $\pi: A \rightarrow B$), then $\operatorname{Sym}(A) \cong$ Sym(B).
- Proof: Consider the map $\varphi: \operatorname{Sym}(A) \rightarrow \operatorname{Sym}(B)$ given by $\sigma \mapsto \pi \circ \sigma \circ \pi^{-1}$.
- Example: $A=\{1,2,3,4,5,6,7\}, B=\{a, b, c, d, e, f, g\}, \sigma=(15)(236)(47)$.
- Isomorphisms preserve all "group-theoretic properties" - properties that can be described in terms of the group operation and numbers of elements of the group (but not the specific names of those elements).
- Examples (from Thms 6.2, 6.3:) If $\varphi: G \rightarrow H$ is an isomorphism, then

1. $\varphi(e)=e$.
2. for all $g \in G, \varphi\left(g^{-1}\right)=\varphi(g)^{-1}$.
3. $\operatorname{order}(\varphi(g))=\operatorname{order}(g)$.
4. if G is abelian, then H is abelian
5. if G is cyclic, then H is cyclic
6. if $G^{\prime} \leq G$, then $\varphi\left(G^{\prime}\right) \stackrel{\text { def }}{=}\left\{\varphi(g): g \in G^{\prime}\right\} \leq H$.

2 Cayley's Theorem

- Def: We write $G \lesssim H$ if G is isomorphic to a subgroup of H. (Equivalently, there is a function $\varphi: G \rightarrow H$ satisfying all of the properties of an isomorphism except for being onto.)
- Example: $D_{n} \lesssim S_{n}$.
- Cayley's Theorem: For every group $G, G \lesssim \operatorname{Sym}(G)$.
- Every group is (isomorphic to) a permutation group!
- The subgroups of S_{n} include all finite groups.

- Proof of Cayley's Thm:

- Example: $\mathbb{Z}_{5} \lesssim \operatorname{Sym}(\{0,1,2,3,4\})$.

3 Automorphisms

- Def: An automorphism of a group G is an isomorphism from G to itself.
- Prop: The set $\operatorname{Aut}(G)$ of automorphisms of G form a group under composition.
- "group-theoretic symmetries" of G
- Example: $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$.
- Def: $x, y \in G$ are conjugates if $y=a x a^{-1}$ for some $a \in G$. (This is an equivalence relation on elements of G.)
- Def: For $a \in G$, the inner automorphism of G corresponding to a is the automorphism ϕ_{a} given by $\phi_{a}(x)=a x a^{-1}$, aka "conjugation by a ".
- Prop: The set $\operatorname{Inn}(G)$ of inner automorphisms of G form a group under composition.
- Examples:
$-\operatorname{Inn}\left(Z_{n}\right)$
$-\operatorname{Inn}\left(G L_{n}(\mathbb{R})\right)$
$-\operatorname{Inn}\left(S_{n}\right)$
- Note: For every group $G, \operatorname{Inn}(G) \leq \operatorname{Aut}(G) \leq \operatorname{Sym}(G)$.
- Fact: $\operatorname{Inn}\left(S_{n}\right) \cong S_{n}$ when $n \geq 3$.
- Fact: $\operatorname{Inn}\left(S_{n}\right)=\operatorname{Aut}\left(S_{n}\right)$ when $n \neq 6$.

