AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 9

October 4, 2010

Reading: Gallian Chapter 6

1 Isomorphisms

- Q: When are two groups the "same" up to the names of elements?
- Examples:
 - $-\mathbb{Z}_2$ and the group $G = \{x, y\}$ with the following Cayley table:

$$\begin{array}{c|cccc} \circ & x & y \\ \hline x & y & x \\ y & x & y \end{array}.$$

- Any infinite cyclic group and \mathbb{Z} .
- Any cyclic group of order n and \mathbb{Z}_n .
- n-dimensional real vector space and \mathbb{R}^n
- **Def:** For groups G and H, an isomorphism from G to H is a mapping $\varphi:G\to H$ such that
 - 1. φ is a bijection (i.e. one-to-one and onto).
 - 2. for every $a, b \in G$, $\varphi(ab) = \varphi(a)\varphi(b)$. (Note that ab is computed using the operation of G, and $\varphi(a)\varphi(b)$ using the operation of H.)

If there exists an isomorphism from G to H, we say that G and H are isomorphic and write $G \cong H$.

- Comments
 - Gallian writes $G \approx H$, but $G \cong H$ is more standard notation than $G \approx H$.

1

- Isomorphism is an equivalence relation on groups.
- More Examples
 - $-S_4 \cong D_8$?

```
- S_4 \cong \mathbb{Z}_{24}?
```

$$-(\mathbb{R},+)\cong(\mathbb{R}^+,\cdot)?$$

- Thm: If A and B are the same size (i.e. there is a bijection $\pi:A\to B$), then $Sym(A)\cong Sym(B)$.
 - **Proof:** Consider the map $\varphi : Sym(A) \to Sym(B)$ given by $\sigma \mapsto \pi \circ \sigma \circ \pi^{-1}$.
 - Example: $A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{a, b, c, d, e, f, g\}, \sigma = (15)(236)(47).$
- Isomorphisms preserve all "group-theoretic properties" properties that can be described in terms of the group operation and numbers of elements of the group (but not the specific names of those elements).
- Examples (from Thms 6.2, 6.3:) If $\varphi: G \to H$ is an isomorphism, then

1.
$$\varphi(e) = e$$
.

2. for all
$$g \in G$$
, $\varphi(g^{-1}) = \varphi(g)^{-1}$.

3.
$$\operatorname{order}(\varphi(g)) = \operatorname{order}(g)$$
.

4. if G is abelian, then H is abelian

5. if G is cyclic, then H is cyclic

6. if $G' \leq G$, then $\varphi(G') \stackrel{\text{def}}{=} \{ \varphi(g) : g \in G' \} \leq H$.

:

2 Cayley's Theorem

- **Def:** We write $G \lesssim H$ if G is isomorphic to a subgroup of H. (Equivalently, there is a function $\varphi: G \to H$ satisfying all of the properties of an isomorphism except for being *onto*.)
- Example: $D_n \lesssim S_n$.
- Cayley's Theorem: For every group $G, G \lesssim Sym(G)$.
 - Every group is (isomorphic to) a permutation group!
 - The subgroups of S_n include all finite groups.

• Proof of Cayley's Thm:

- **Example:**
$$\mathbb{Z}_5 \lesssim Sym(\{0,1,2,3,4\}).$$

3 Automorphisms

- **Def:** An automorphism of a group G is an isomorphism from G to itself.
- **Prop:** The set Aut(G) of automorphisms of G form a group under composition.
 - "group-theoretic symmetries" of G
- Example: $\operatorname{Aut}(\mathbb{Z}_n)$.
- **Def:** $x, y \in G$ are *conjugates* if $y = axa^{-1}$ for some $a \in G$. (This is an equivalence relation on elements of G.)
- **Def:** For $a \in G$, the *inner automorphism* of G corresponding to a is the automorphism ϕ_a given by $\phi_a(x) = axa^{-1}$, aka "conjugation by a".
- **Prop:** The set Inn(G) of inner automorphisms of G form a group under composition.
- Examples:

$$-\operatorname{Inn}(Z_n)$$

$$-\operatorname{Inn}(GL_n(\mathbb{R}))$$

$$-\operatorname{Inn}(S_n)$$

- Note: For every group G, $Inn(G) \leq Aut(G) \leq Sym(G)$.
- Fact: $Inn(S_n) \cong S_n$ when $n \geq 3$.
- Fact: $Inn(S_n) = Aut(S_n)$ when $n \neq 6$.