AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 12

October 20, 2010

• Reading: Gallian Chapters 9 & 10

1 Normal Subgroups

- Motivation:
 - Recall that the cosets of $n\mathbb{Z}$ in \mathbb{Z} $(a+n\mathbb{Z})$ are the same as the congruence classes modulo n $([a]_n)$
 - These form a group under addition, isomorphic to \mathbb{Z}_n^* : $[a+b]_n = [a+b \mod n]_n$ depends only on $[a]_n$ and $[b]_n$ (and not on the particular choice of coset representatives a and b), so we can define $[a]_n + [b]_n = [a+b]_n$.
 - **Q**: under what conditions on $H \leq G$ do the left-cosets of H form a group under the operation of G?
- **Def:** A subgroup H of G is *normal* iff for every $a \in G$, aH = Ha. If this holds, we write $H \triangleleft G$.
- **Proposition:** For $H \leq G$, the following are equivalent:
 - $H \lhd G$
 - for every $a \in G$, $aHa^{-1} = H$
 - for every $a \in G$, $h \in H$, $aha^{-1} \in H$. That is, if $h \in H$, then all *conjugates* of h are also in H.

• Examples:

- Which subgroups of an abelian group are normal?
- Which subgroups of S_4 are normal?

 $-A_n \lhd S_n$

2 Factor Groups

- Thm 9.2: If H⊲G, then the operation (aH)(bH) = abH on the left-cosets of H is well-defined (does not depend on the choice of coset representatives a, b) and forms a group, denoted G/H (called a *factor group*, the *quotient* of G by H, or "G mod H").
- Proof:

• Examples:

 $-\mathbb{Z}/n\mathbb{Z}$

- $-S_n/A_n$
- $(\mathbb{Z}_3 \times \mathbb{Z}_5)/(\mathbb{Z}_3 \times \{0\})$
- $-S_4/H$ where H is the normal subgroup of size 4.
- $-\mathbb{Z}_n/\langle a \rangle$
- $-\mathbb{R}/\mathbb{Z}$

3 Homomorphisms

- **Def:** For groups G, H, and mapping $\varphi : G \to H$ is a homomorphism if for all $a, b \in G$, we have $\varphi(ab) = \varphi(a)\varphi(b)$.
 - Note: we don't require that φ is one-to-one or onto!
- **Def:** For a homomorphism $\varphi: G \to H$,
 - the image of φ is $\operatorname{Im}(\varphi) = \varphi(G) = \{\varphi(g) : g \in G\} \leq H$.
 - the kernel of φ is $\operatorname{Ker}(\varphi) = \{g \in G : \varphi(g) = \varepsilon\} \triangleleft G$.
- Thm 10.3: If φ : G → H is a homomorphism, then G/Ker(φ) ≃ Im(φ).
 Picture:

• Examples:

Domain	Range	Mapping	Homo.?	Image	Kernel
\mathbb{Z}	\mathbb{Z}_n	$x \mapsto x \bmod n$			
\mathbb{Z}_n	\mathbb{Z}_d	$x \mapsto x \bmod d$			
\mathbb{R}^n	\mathbb{R}^{n}	$x \mapsto Mx, M$ a matrix			
$\mathbb{Z} imes \mathbb{Z}$	\mathbb{Z}	$(x,y)\mapsto xy$			
S_n	$\{\pm 1\}$	$\sigma \mapsto \operatorname{sign}(\sigma)$			
R	\mathbb{C}^*	$x \mapsto e^{2\pi i x}$			
$\mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_3	$(x,y)\mapsto x$			
G	G/N , where $N \lhd G$	$g \mapsto gN$			

• Properties of Homomorphisms:

- 1. $\varphi(\varepsilon_G) = \varepsilon_H$.
- 2. $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- 3. $\operatorname{order}(\varphi(a))$ divides $\operatorname{order}(a)$.

• Properties of Images:

- 1. $\varphi(G)$ is a subgroup of H.
- 2. G cyclic $\Rightarrow \varphi(G)$ cyclic.
- 3. G abelian $\Rightarrow \varphi(G)$ abelian.

• Properties of Kernels:

- 1. $\operatorname{Ker}(\varphi)$ is normal subgroup of G.
 - Can prove that K is normal by finding a homomorphism φ s.t. $\text{Ker}(\varphi) = K$.
- $2. \ \varphi(a)=\varphi(b) \Leftrightarrow b^{-1}a \in \operatorname{Ker}(\varphi) \Leftrightarrow a\operatorname{Ker}(\varphi)=b\operatorname{Ker}(\varphi).$
- 3. φ injective (one-to-one) if and only if $\operatorname{Ker}(\varphi) = \{\varepsilon\}$.

• Proof of Thm 10.3 $(G/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi))$: