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1 Polynomial Rings

e Reading: Gallian Ch. 16

e Def: Let R be a commutative ring with unity. The ring of polynomials over R is the ring
R[z] consisting of all expressions of the form ag + a1x + agz? + - - -, where each a; € R and
all but finitely many a;’s are zero. (We usually omit the zero terms, so 1+ 5z + 1022 + 323
is shorthand for 1+ 5z + 1022 + 323 + 0x* + 02° + - - -.)

For two polynomials p(x) = Y, a;2" and g(x) = Y, bz, their sum (p+ ¢)(x) is defined to be
the polynomial _.(a;+b;)z" and their product (pg)(z) is the polynomial >3 05=0 (ajbj—;))x’,
where a; + b; and a;jb;_; are defined using the operations of R.

Def: The degree deg(p) of a nonzero polynomial p(z) = 3, a;x" is the largest d such that
aq # 0. aq is called the leading coefficient of p. p is called monic if ag = 1.

Examples: p(z) = 322 + 4z + 1 and g(x) = 52 + 6 in Z;[z].

e Remarks:

— R[z] is a commutative ring with unity.

— Two different polynomials can define the same function on R, but we still treat them as
different elements of R[z]. For example p(x) =z - (z —1)---(z —p+ 1) defines the zero
function on Z,, but is not the zero polynomial (why?).

— For polynomials of degree at most n, their sum can be computed using n operations
over R and their product using O(n?) operations over R. (Best known multiplication
algorithm uses O(n log n) operations.) Note similarity with sum and product of integers!

e Thm 16.1: R an integral domain = R[z]| an integral domain.
Proof:



e We will focus on the case that the coefficient ring R is a field F. In this case, we will see that

the ring F'[z] has many similar properties to the ring Z. In fact, things tend to be easier to
prove and to compute over F[z]| than over Z.

e Division with Remainder (Thm 16.2): f(z), g(z) € F[z], g(x) nonzero, then there exist

(unique) polynomials ¢(z) and r(z) with deg(r) < deg(g) and f(x) = q(z)g(x) + r(x). More-
over, if f and g have degree at most n, then q(x) and r(z) can be computed using O(n?)
operations from F'.

Proof and algorithm (long division of polynomials): Inputs are f(x) = a,x™ +
an 12" L+ o+ arr + ag, g(z) = bpa™ + by1x™ 4 oo 4+ by + by, We'll compute
Q(l‘) =Cpmx"" "+ -+ T + .

1. Let fo(z) = f(x).
2. Fori=0ton—m:
(a) Let a be the coefficient of z"~% in f;(z), and let ¢, _pm_; = b;,'a.
(b) Let fir1(z) = fi(z) — cpom—iz™ ™ ¢ - g(z). (This zeroes out the term of degree
n—i.)
3. Output ¢(z) = cp—pmx™ ™ + -+ + 12 + .

Example: f(x) = 322 + 42 + 1 divided by g(z) = 5z + 6 in Zz[z].

Note: all we used about F' being a field is that b,, has an inverse. Over general rings R,
division is possible if the leading coefficient of g(z) is a unit (e.g. if g is monic).

Corollary: Let R be a commutative ring with unity, f(z) € R[z], and a € R. Then f(a) =0
if and only if (x — a) divides f(z) in R]x].
Proof:

Corollary: A polynomial of degree n over an integral domain R has at most n zeroes.

— This simple fact is extremely useful! Ought to be called the “fundamental thm of algebra”
(which is unfortunately used for the fact that every polynomial has a root in C).

— Another example of “If an algebraic identity fails, then it fails often.”

Proof:



