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1 Polynomial Rings

• Reading: Gallian Ch. 16

• Def: Let R be a commutative ring with unity. The ring of polynomials over R is the ring
R[x] consisting of all expressions of the form a0 + a1x + a2x

2 + · · ·, where each ai ∈ R and
all but finitely many ai’s are zero. (We usually omit the zero terms, so 1 + 5x + 10x2 + 3x3

is shorthand for 1 + 5x + 10x2 + 3x3 + 0x4 + 0x5 + · · ·.)
For two polynomials p(x) =

∑
i aix

i and q(x) =
∑

i bix
i, their sum (p + q)(x) is defined to be

the polynomial
∑

i(ai+bi)xi and their product (pq)(x) is the polynomial
∑

i(
∑i

j=0(ajbj−i))xi,
where ai + bi and ajbj−i are defined using the operations of R.

• Def: The degree deg(p) of a nonzero polynomial p(x) =
∑

i aix
i is the largest d such that

ad 6= 0. ad is called the leading coefficient of p. p is called monic if ad = 1.

• Examples: p(x) = 3x2 + 4x + 1 and q(x) = 5x + 6 in Z7[x].

• Remarks:

– R[x] is a commutative ring with unity.

– Two different polynomials can define the same function on R, but we still treat them as
different elements of R[x]. For example p(x) = x · (x− 1) · · · (x− p + 1) defines the zero
function on Zp, but is not the zero polynomial (why?).

– For polynomials of degree at most n, their sum can be computed using n operations
over R and their product using O(n2) operations over R. (Best known multiplication
algorithm uses O(n log n) operations.) Note similarity with sum and product of integers!

• Thm 16.1: R an integral domain ⇒ R[x] an integral domain.
Proof:
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• We will focus on the case that the coefficient ring R is a field F . In this case, we will see that
the ring F [x] has many similar properties to the ring Z. In fact, things tend to be easier to
prove and to compute over F [x] than over Z.

• Division with Remainder (Thm 16.2): f(x), g(x) ∈ F [x], g(x) nonzero, then there exist
(unique) polynomials q(x) and r(x) with deg(r) < deg(g) and f(x) = q(x)g(x) + r(x). More-
over, if f and g have degree at most n, then q(x) and r(x) can be computed using O(n2)
operations from F .

Proof and algorithm (long division of polynomials): Inputs are f(x) = anxn +
an−1x

n−1 + · · · + a1x + a0, g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0. We’ll compute

q(x) = cn−mxn−m + · · ·+ c1x + c0.

1. Let f0(x) = f(x).
2. For i = 0 to n−m:

(a) Let a be the coefficient of xn−i in fi(x), and let cn−m−i = b−1
m a.

(b) Let fi+1(x) = fi(x) − cn−m−ix
n−m−i · g(x). (This zeroes out the term of degree

n− i.)
3. Output q(x) = cn−mxn−m + · · ·+ c1x + c0.

• Example: f(x) = 3x2 + 4x + 1 divided by g(x) = 5x + 6 in Z7[x].

• Note: all we used about F being a field is that bm has an inverse. Over general rings R,
division is possible if the leading coefficient of g(x) is a unit (e.g. if g is monic).

• Corollary: Let R be a commutative ring with unity, f(x) ∈ R[x], and a ∈ R. Then f(a) = 0
if and only if (x− a) divides f(x) in R[x].
Proof:

• Corollary: A polynomial of degree n over an integral domain R has at most n zeroes.

– This simple fact is extremely useful! Ought to be called the “fundamental thm of algebra”
(which is unfortunately used for the fact that every polynomial has a root in C).

– Another example of “If an algebraic identity fails, then it fails often.”

Proof:

2


