AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 6

September 22, 2010

1 More Groups

- Reading: Gallian Ch. 1,2
- Symmetric Group Sym(S)
 - Terminology
 - * Injection = one-to-one function
 - * Surjection = onto function
 - * Bijection = one-to-one and onto function
 - * Permutation = bijection from a set to itself
 - Sym(S) is the set of all permutations $\pi : S \to S$ under composition. $\pi \circ \tau$ is the permutation defined by $(\pi \circ \tau)(x) = \pi(\tau(x))$.
 - $S_n = Sym(\{1,\ldots,n\}).$
 - Example: S_3

 $- \mathbf{Q}: |S_n| = ?$

- Dihedral Group D_n
 - "Symmetries" of regular *n*-gon, $n \ge 3$.
 - D_n is the set of distance-preserving transformations T of the plane such that T(n-gon) = n-gon.
 - Elements of D_n
 - * If we label vertices 0, 1, ..., n 1 (representing points in \mathbb{R}^2) clockwise, then each element $T \in D_n$ is determined by T(0) and T(1).
 - * $\operatorname{Rot}_k(i) = k + i \mod n$: Clockwise rotation by $(k/n)360^\circ$.
 - * $\operatorname{Ref}_k(i) = k i \mod n$: Reflection through line at $(k/n)180^\circ$ clockwise from line through vertex 0.
 - Generalizes to define symmetries of other geometric objects, eg of tilings, of molecules, and of crystals (cf. Gallian Chs 27–28).

2 Subgroups

- Gallian Chapter 3.
- **Def:** The order of a group G, denoted |G|, is the number of elements in G (possibly ∞).
- Def: For a group G and g ∈ G, the order of g, denoted |g|, is the smallest positive integer n such that gⁿ = e (or ∞ if no such n exists).
 Example: Orders in S₃

Example: Orders in \mathbb{Q}^*

- **Def:** A subset H of G is called a *subgroup* of G (denoted $H \leq G$) iff H is a group under the operation of G.
- **Example:** $\{0\} \leq \{\text{even integers}\} \leq \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} \text{ under addition.}$
- Thms 3.1–3.3 (Subgroup Tests): For a subset *H* of a group *G*, the following are equivalent (TFAE):
 - 1. $H \leq G$.
 - 2. *H* is nonempty, and for all $a, b \in H$, we have $ab \in H$ and $a^{-1} \in H$.
 - 3. *H* is nonempty, and for all $a, b \in H$, we have $ab^{-1} \in H$.

In case H is finite, the following condition is also equivalent to the above:

4. *H* nonempty and for all $a, b \in H$, we have $ab \in H$.

Proof:

 $2{\Rightarrow}1:$

 $4{\Rightarrow}4$:

Other implications: in book

• Example: Subgroup lattice of S₃

- **Example:** Subgroup lattice of \mathbb{Z}_{12}^*
- **Def:** For a group G and $g \in G$, the *(cyclic)* subgroup generated by g is $\langle g \rangle = \{g^n : n \in \mathbb{Z}\} = \{\dots, g^{-2}, g^{-1}, g^0 = e, g^1 = g, g^2, \dots\}.$
- Examples:
 - $-\langle 3/2\rangle$ in \mathbb{R}^* .
 - Cyclic subgroups of S_3 , \mathbb{Z}_{12}^*