1 More Groups

- Reading: Gallian Ch. 1,2

- Symmetric Group $\text{Sym}(S)$
 - Terminology
 - Injection = one-to-one function
 - Surjection = onto function
 - Bijection = one-to-one and onto function
 - Permutation = bijection from a set to itself
 - $\text{Sym}(S)$ is the set of all permutations $\pi : S \to S$ under composition. $\pi \circ \tau$ is the permutation defined by $(\pi \circ \tau)(x) = \pi(\tau(x))$.
 - $S_n = \text{Sym}\{1, \ldots, n\}$.
 - Example: S_3

- Q: $|S_n| = ?$

- Dihedral Group D_n
 - “Symmetries” of regular n-gon, $n \geq 3$.
 - D_n is the set of distance-preserving transformations T of the plane such that $T(n$-gon) = n-gon.
 - Elements of D_n
 - If we label vertices $0, 1, \ldots, n - 1$ (representing points in \mathbb{R}^2) clockwise, then each element $T \in D_n$ is determined by $T(0)$ and $T(1)$.
 - $\text{Rot}_k(i) = k + i \text{ mod } n$: Clockwise rotation by $(k/n)360^\circ$.
 - $\text{Ref}_k(i) = k - i \text{ mod } n$: Reflection through line at $(k/n)180^\circ$ clockwise from line through vertex 0.
 - Generalizes to define symmetries of other geometric objects, e.g., tilings, of molecules, and of crystals (cf. Gallian Chs 27–28).
2 Subgroups

• Gallian Chapter 3.

• Def: The order of a group G, denoted $|G|$, is the number of elements in G (possibly ∞).

• Def: For a group G and $g \in G$, the order of g, denoted $|g|$, is the smallest positive integer n such that $g^n = e$ (or ∞ if no such n exists).

Example: Orders in S_3

Example: Orders in \mathbb{Q}^*

• Def: A subset H of G is called a subgroup of G (denoted $H \leq G$) iff H is a group under the operation of G.

• Example: $\{0\} \leq \{\text{even integers}\} \leq \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ under addition.

• Thms 3.1–3.3 (Subgroup Tests): For a subset H of a group G, the following are equivalent (TFAE):

 1. $H \leq G$.
 2. H is nonempty, and for all $a, b \in H$, we have $ab \in H$ and $a^{-1} \in H$.
 3. H is nonempty, and for all $a, b \in H$, we have $ab^{-1} \in H$.

In case H is finite, the following condition is also equivalent to the above:

 4. H nonempty and for all $a, b \in H$, we have $ab \in H$.

Proof:

$2 \Rightarrow 1$:

$4 \Rightarrow 4$:

Other implications: in book

• Example: Subgroup lattice of S_3
• **Example:** Subgroup lattice of \mathbb{Z}_{12}^*

• **Def:** For a group G and $g \in G$, the (cyclic) subgroup generated by g is $\langle g \rangle = \{g^n : n \in \mathbb{Z}\} = \{\ldots, g^{-2}, g^{-1}, g^0 = e, g^1 = g, g^2, \ldots \}$.

• **Examples:**
 - $\langle 3/2 \rangle$ in \mathbb{R}^*.
 - Cyclic subgroups of S_3, \mathbb{Z}_{12}^*