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• Reading: Gallian Chs. 27 & 28

• Most of the applications of group theory to the physical sciences are through the study of
the symmetry groups of physical objects (e.g. molecules or crystals). Understanding the
symmetries helps in understanding the objects’ physical properties and in determining the
structure of the objects from measurements or images.

1 Isometries

• Recall that symmetry groups of geometric objects are defined in terms of isometries, so we
begin by understanding those.

• Def: An isometry of Rn is a function T : Rn → Rn such that for every x, y ∈ Rn, we have
‖T (x)− T (y)‖ = ‖x− y‖.

– Isometries are always permutations (bijections).

– The set of isometries of Rn forms a group under composition, known as the Euclidean
Group En.

– Isometries preserve angles: 〈T (x), T (y)〉 = 〈x, y〉.
– Although most physical objects live in R3, we’ll focus on objects in R2. Symmetry of

2-D objects is useful in surface physics. Everything we’ll discuss has generalizations to
R3.

• Linear-algebraic Description of Isometries:

– Fact: The isometries of Rn are exactly the maps of the form T (x) = Ax+ b, where A is
an n× n orthogonal matrix (i.e., AAt = I, where At is the transpose of A) and b ∈ Rn.

– In R2, the possible orthogonal matrices A are:

Rotθ =
(

cos θ sin θ
− sin θ cos θ

)
, and Refθ =

(
− cos θ sin θ
sin θ cos θ

)
,

for θ ∈ [0, 2π). Rotθ is a clockwise rotation around the origin by angle θ. Refθ is a
reflection through the axis that is the y-axis rotated clockwise by angle θ/2.

• Classification of Isometries T (x) = Ax+ b of R2:

– A = Rot0 = I: T is a translation.

– A = Rotθ for θ ∈ (0, 2π): T is a clockwise rotation by θ degrees about the point
(I −A)−1b. (I −A is invertible because A has no fixed points.)

1



– A = Refθ, b orthogonal to the axis ` of reflection: T is a reflection through the axis
`+ b/2.

– A = Refθ, b parallel to axis of reflection: T is a glide-reflection:

– A = Refθ, b neither parallel nor perpendicular to axis of reflection: T is a glide-reflection
along the axis ` + b′/2, where b′ is the component of b perpendicular to the axis of
reflection.

• Q: What are the orders of each of the above elements (in the group of isometries of R2 under
composition)?

2 Symmetry Groups

• Def: For a set F of points in Rn, the symmetry group of F is the set Isom(F ) of isometries
T : Rn → Rn such that T (F ) = F , where T (F ) = {T (x) : x ∈ F}, under composition.

• Many physical objects are not merely sets of points, but the points have different types (eg
they may be different atoms). We can generalize the above definition to allow a set X of types
of points (where X includes an element that represents no point being present) as follows:

• Def: For a function F : Rn → X, the symmetry group of F is the set Isom(F ) of isometries
T : Rn → Rn such that F ◦ T = F , under composition. That is the type F (T (x)) of point
T (x) equals the type F (x) of point x, for all x ∈ Rn.

• Examples: Silicon (100) Face. This is the 2-D crystal obtained by cutting a 3-D Silicon
crystal along a particular face. When this is done the forces exerted on atoms near the
surface changes, causing those atoms to shift slightly, reducing the symmetry and changing
the physical properties (as we will see). This process is called reconstruction. The attached
sheets show both the unreconstructed and reconstructed forms of the Si(100) face. All the
circles are silicon atoms. The different colors and heights indicate different distances from
the surface, so we treat these atoms as different from each other.

• Important subgroups of Isom(F ):.

– The translation subgroup Trans(F ) is the set of translations in Isom(F ). This is a normal
subgroup of Isom(F ).

– For p ∈ Rn, the point group at p is Point(F, p) = stabG(p) = {T ∈ G : T (p) = p}.
∗ Includes rotations around p and reflections through axis containing p.
∗ May be different for different points p.
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– From knowledge of Trans(F ) and Point(F, p) for a point p of highest rotational symmetry
(i.e. Point(F, p) contains a rotation of the smallest angle among all points p), it is usually
not much work to determine the full symmetry group Isom(F ). (See PS7.)

• Let’s calculate these subgroups for our Si(100) examples.

3 Crystallographic Groups

• Def: A 2-D crystal is an infinite arrangement F : R2 → X of molecules or atoms whose
translation subgroup is isomorphic to Z × Z. That is, there are two linearly independent
vectors v1, v2 ∈ R2 such that the translational symmetries of F are exactly those of the form
x 7→ x+ k1v1 + k2v2 for integers k1, k2.

• The points Latt(F ) = {k1v1 + k2v2} are a 2-dimensional lattice, consisting of points that are
symmetric with the origin under translational symmetry. We call this the translation lattice
of F .

• Thm: If F : R2 → X is a 2-D crystal and p ∈ R2, then Rot(F, p) is of order 1, 2, 3, 4, or 6.
Hence Rot(F, p) is isomorphic to Zn or Dn for n ∈ {1, 2, 3, 4, 6}.

Proof: We’ll show n ≤ 6. The proof that n 6= 5 is similar. By translating, we can as-
sume p = 0. Let v be a shortest nonzero vector in the translation lattice for F , and Tv be the
corresponding translation. If Rotθ ∈ Point(F, 0), then

Rotθ ◦ Tv ◦ Rot−1
θ = TRotθv

is also in the translation subgroup. Thus, v−Rotθv is also in the translation lattice. Since v
was the shortest nonzero vector in the translation lattice, we have

‖v − Rotθv‖ ≥ ‖v‖,

i.e. sin(θ/2) ≥ 1/2. If θ = 1/n for a positive integer n, then this implies n ≥ 6.

• Example: The 5 geometrically distinct 2-D lattices (parallelogram, square, rectangular,
rhombic, hexagonal) and their point groups (Gallian Figure 28.20). Whether or not these full
symmetry groups are retained depends on what is placed in the fundamental region of the
lattice.

• The Plane Crystallographic Groups:

– There are 17 different plane cystallographic groups. This holds whether our notion
of equivalence between Isom(F1) and Isom(F2) is group isomoporphism, or “geometric
equivalence” (the groups are identical under an affine-linear change of coordinates).

– Gallian Figure 28.18 gives a flowchart for classifying plane figures of these 17 groups.
Let’s apply this to our Si(100) examples.
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4 Using Symmetry to Understand Physical Properties

• Any physical property of a molecule or crystal must be invariant on its symmetry group.

• For example, let γ : R2 → R be a scalar quantity giving some physical property of F at each
point such as the surface energy or line energy density. Then it most hold that γ ◦T = γ for
every T in the symmetry group of F . Note that it suffices to impose this condition just for a
set {T1, . . . , Tk} of generators of the symmetry group G, i.e. G = 〈T1, . . . , Tk〉. This reduces
the number of degrees of freedom in h.

• For example, the symmetry group of the square lattice has generators Rotπ/2, Ref0, T(1,0)

and T(0,1). This imposes the following constraints on γ:

γ(x, y) = γ(y,−x)
γ(x, y) = γ(−x, y)
γ(x, y) = γ(x+ 1, y)
γ(x, y) = γ(x, y + 1)

Group theory (specifically, the theory of group representations) characterizes the form of
possible functions h that can satisfy the above conditions.

• Many physical quantities of interest, such as electric fields and current density, are not scalars
but vector fields h : R2 → R2 (or h : R3 → R3). Two examples of interest in surface physics
are the mass flux J : R2 → R2, which gives the amount and direction of flow of a substance at
a point on the surface, and the concentration gradient ∇φ : R2 → R2. The relation between
these two quantities is a physical property of the crystal known as the diffusivity D, which is
a 2× 2 matrix. Fick’s Law says that J = −D∇φ. That is, for every (u, v) ∈ R2, we have:(

Jx(u, v)
Jy(u, v)

)
= −

(
Dxx Dyx

Dxy Dyy

) (
(∇φ)x(u, v)
(∇φ)y(u, v)

)
.

• Note that we are assuming that the diffusivityD has no dependence on the position u, v (which
is reasonable because diffusion is a macroscopic property). Thus its behavior is automatically
invariant under translation. However the point group still imposes additional constraints on
D. Specifically, if we apply a symmetry element A ∈ Point(F, (0, 0)) to the concentration
gradient (∇φ)(0, 0) at zero, then we should get current density AJ(0, 0). So

−DA(∇φ)(0, 0) = AJ(0, 0) = A(−D(∇φ))(0, 0).

Since this holds for all vectors ∇φ(0, 0), we have

DA = AD

(or equivalently ADA−1 = D).

For example, if the point group at 0 were D4 (as in the square lattice, or the unreconstructed
Si(100) face if we treat atoms at different heights as equivalent), then taking A = Rotπ/2 =(

0 1
−1 0

)
, we get the following constraints on σ:(

−Dyx Dxx

−Dyy Dxy

)
=

(
Dxy Dyy

−Dxx −Dyx

)
,
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which tells us that Dxx = Dyy and Dxy = −Dyx.

Taking A = Ref0, we get: (
−Dxx Dyx

−Dxy Dyy

)
=

(
−Dxx −Dyx

Dxy Dyy

)
,

which tells us that Dxy = Dyx = 0. Thus we conclude that D is simply of the form:

D =
(
α 0
0 α

)
,

i.e. the diffusivity is a fixed constant, independent of direction. When a physical property is
idependent of direction like this, it is called isotropic. On the other hand, in the case of the
Si(100) surfaces (either the reconstructed case, or the unreconstructed case if we treat atoms
at different heights as inequivalent), the point group is generated by Ref0 and −I. The latter
commutes with every matrix, and hence imposes no additional constraints. Thus, we can
only conclude that the diffusivity is a diagonal matrix, but it may have different constants
of proportionality in the x and y directions. That is, in this case, the diffusivity may be
anisotropic.
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