AM 106/206: Applied Algebra

Prof. Salil Vadhan

Lecture Notes 20

November 22, 2010

1 Vector Spaces

• Reading: Gallian Ch. 19

• Today's main message: linear algebra (as in Math 21) can be done over any field, and most of the results you're familiar with from the case of \mathbb{R} or \mathbb{C} carry over.

• **Def:** A vector space over a field F is a set V with two operations $+: V \times V \to V$ (vector addition) and $\cdot: F \times V \to V$ (scalar multiplications) that satisfy the following properties:

1. V is an abelian group under +.

2. $(ab) \cdot v = a \cdot (b \cdot v)$ for all $a, b \in F$ and $v \in V$.

3. $1 \cdot v = v$ for all $v \in V$.

4. $a \cdot (v + w) = a \cdot v + a \cdot w$ for all $a \in F$ and $v, w \in V$.

5. $(a+b) \cdot v = a \cdot v + b \cdot v$ for all $a, b \in F$ and $v \in V$.

• A vector space has more structure than an abelian group, but less structure than a ring (only multiplication by scalars, not multiplication of arbitrary pairs of elements of V).

• Examples and Nonexamples:

$$-V = F^n$$

$$-V=\mathbb{C}, F=\mathbb{R}$$

$$-V=\mathbb{Z}^n, F=\mathbb{Z}_2$$

$$-V = F[x]$$

$$-\ V = F[x]/\langle p(x)\rangle$$

-V = R for a ring R containing F.

- **Def:** Let V be a vector space over of F. Vectors $v_1, \ldots, v_n \in V$ are linearly independent iff for every $c_1, \ldots, c_n \in F$, if $c_1v_1 + \cdots + c_nv_n = 0$, then $c_1 = \cdots = c_n = 0$. The vectors v_1, \ldots, v_n form a basis for V iff they are linearly independent and $\mathrm{Span}(v_1, \ldots, v_n) = V$, where $\mathrm{Span}(v_1, \ldots, v_n) = \{c_1v_1 + \cdots + c_nv_n : c_1, \ldots, c_n \in F\}$.
- Examples of bases:
 - $-(1,0,0,\cdots,0), (0,1,0,\ldots,0), \ldots, (0,0,0,\ldots,1)$ is a basis for F^n for every field F.
 - **Q**: Is (1,1,0), (1,0,1), (0,1,1) always a basis for F^3 ?
 - Bases for other examples above?
- **Def:** The *dimension* of a vector space V over F is the size of the largest set of linearly independent vectors in V. (different than Gallian, but we'll show it to be equivalent)
 - A measure of "size" that makes sense even for infinite sets.
- **Prop:** Every finite-dimensional vector space has a basis consisting of $\dim(V)$ vectors. Later we'll see that all bases have exactly $\dim(V)$ vectors.

Proof: Let v_1, \ldots, v_k be the largest set of linearly independent vectors in V (so $k = \dim(V)$). To show that this is a basis, we need to show that it spans V. Let w be any vector in V. Since v_1, \ldots, v_k, w has more than $\dim(V)$ vectors, this set must be linearly dependent, i.e. there exists constants $c_1, \ldots, c_k, d \in F$, not all zero, such that $c_1v_1 + \cdots + c_kv_k + dw = 0$. The linear independence of v_1, \ldots, v_k implies that $d \neq 0$. Thus, we can write $w = (c_1/d_1)v_1 + \cdots + (c_k/d_k)v_k$. So every vector in V is in the span of v_1, \ldots, v_k .

- **Q:** What are the dimensions of the above examples?
- Corollaries:
 - If V is an n-dimensional vector space over a finite field F, then $|V| = |F|^n$.
 - If E is a finite field and F is a subfield of E, then $|E| = |F|^n$ for some $n \in \mathbb{N}$. (Much stronger than Lagrange, which only says |F| divides |E|.)
 - if E is a finite field of characteristic p, then $|E|=p^n$ for some $n \in \mathbb{N}$. (Shown on PS7 using Classification of Abelian Groups.)

2 Maps Between Vector Spaces

- **Def (vector-space homomorphisms):** Let V and W be two vector spaces over F. A function $f: V \to W$ is a *linear map* iff for every $x, y \in V$ and $c \in F$, we have
 - 1. f(x+y) = f(x) + f(y) (i.e. f is a group homomorphism), and
 - 2. f(cx) = cf(x).

f is an isomorphism if f is also a bijection. If there is an isomorphism between V and W, we say that they are isomorphic and write $V \cong W$.

• **Prop:** Every *n*-dimensional vector space V over F is isomorphic to F^n .

Proof: Let v_1, \ldots, v_n be a basis for V.

Then an isomorphism from F^n to V is given by:

- Matrices: A linear map $f: F^n \to F^m$ can be described uniquely by an $m \times n$ matrix M with entries from F.
 - $-M_{ij}=f(e_j)_i$, where $e_j=(000\cdots 010\cdots 00)$ has a 1 in the j'th position.
 - For $v=(v_1,\ldots,v_n)\in F^n$, $f(v)_i=f(\sum_j v_je_j)_i=\sum_j v_jf(e_j)_i=\sum_i M_{ij}v_j=(Mv)_i$, where Mv is matrix-vector product.
 - Matrix multiplication \leftrightarrow composition of linear maps.
 - If n = m, then f is an isomorphism $\Leftrightarrow \det(M) \neq 0$.
 - Solving Mv = w for v (when given M and $w \in F^m$) is equivalent to solving a linear system with m variables and n unknowns.
- **Example:** $f: \mathbb{Z}_3^3 \to \mathbb{Z}_2^3$ given by $f(v_1, v_2, v_3) = (v_1 + 2v_2, 2v_1 + v_3)$.
- Thm: If $f: V \to W$ is a linear map, then $\dim(\ker(f)) + \dim(\operatorname{im}(f)) = \dim(V)$.

Proof: omitted.

- When F finite, this says $|V| = |F|^{\dim(V)} = |F|^{\dim(\ker(f))} \cdot |F|^{\dim(\operatorname{im}(f))} = |\ker(f)| \cdot |\operatorname{im}(f)|$, just like for group homomorphisms!
- Corollaries:
 - $-F^n \ncong F^m \text{ if } m \neq n.$
 - All bases of a vector space have the same size.
 - A homogenous linear system Mv = 0 for a given $m \times n$ matrix M always has a nonzero solution v if n > m (more variables than unknowns).
- Computational issues: For $n \times n$ matrices over F,
 - Matrix multiplication can be done with $O(n^3)$ operations in F using the standard algorithm.
 - The determinant and inverse, and solving a linear system Mv = w can be done using $O(n^3)$ operations in F using Gaussian elimination. (For infinite fields, need to worry about the size of the numbers, or accuracy if doing approximate arithmetic. No such problem in finite fields.)

– Asymptotically fastest known algorithms run in time $O(n^{2.376})$. Whether time $O(n^2)$ is possible is a long-standing open problem.

3 Application to Extension Fields

- Reading: parts of Gallian Ch. 21
- **Def:** E is an extension field of F is F is a subfield of E. The degree of E over F is the dimension of E as a vector space over F, and is denoted [E:F]. E is a finite extension if [E:F] is finite.
- Examples:

$$- [\mathbb{C} : \mathbb{R}] =$$

$$- [F[x]/\langle p(x)\rangle : F] =$$

$$- [F(\alpha) : F] =$$

- Thm 21.5: If K is a finite extension of E, and E is a finite extension of F, then [K:F] = [K:E][E:F].
- **Example:** The splitting field of $x^8 1$ over \mathbb{Q} , i.e. $\mathbb{Q}(\omega) = \mathbb{Q}(i)(\omega)$, where $\omega = e^{2\pi i/8}$.
- Proof:

• Corollary: If E is a finite extension of F and $\alpha \in E$, then α is algebraic over F and its minimal polynomial has degree dividing [E:F].