AM 106/206: Applied Algebra

Prof. Salil Vadhan

Problem Set 1

Assigned: Sun. Sept. 12, 2010 Due: Fri. Sept. 17, 2010 (2:10 PM sharp)

- You may submit your problem sets in the AM106 in the Maxwell-Dworkin basement, or electronically by email to am106-hw@seas.harvard.edu. If you use LATEX, please submit both the source (.tex) and the compiled file (.pdf). Name your files PS1-yourlastname.
- Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details.
- Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students should confirm that they know how to do them), and those marked [AM206-X] are for AM206 students. However, AM106 students can do a problem marked [AM206-X] instead of one marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge). If you wish to keep the option of staying in either AM106 or AM206 open until add/drop date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Equivalence Relations [AM106]) Which of the following are equivalence relations? If it is an equivalence relation, describe the equivalence classes. If it is not, which property fail?

- 1. Domain: the positive integers. Relation: $a \sim b$ if gcd(a, b) > 1.
- 2. Domain: sets of real numbers. Relation: $A \sim B$ if $A \cap B = \emptyset$.
- 3. Domain: \mathbb{C} . Relation: $a \sim b$ if a = rb for a positive real number r.

Problem 2. (Equivalence of Induction Axioms) Prove that Strong Induction implies the Well-ordering Principle.

Problem 3. (Modular Exponentiation [AM106-A])

- 1. Show that there is no polynomial-time algorithm that, when given $x, y \in \mathbb{N}$, computes x^y . (Hint: how many bits/digits can x^y have?)
- 2. Give a polynomial-time algorithm that, when given $x, y, z \in \mathbb{N}$ with z > 0, computes x^y mod z. (Hint: use the formula $x^y = \prod_i (x^{2^i})^{y_i}$, where y_i is the *i*'th bit of the binary representation of y, and be careful about the length of intermediate values.)

Problem 4. (Subquadratic Integer Multiplication [AM206-A])

- 1. Given two 2n-bit numbers $a, b \in \mathbb{N}$, we can write $a = a_u \cdot 2^n + a_\ell$ and $b = b_u \cdot 2^n + b_\ell$, where a_u, a_ℓ, b_u, b_ℓ are n-bit integers. Then the product $a \cdot b = a_u b_u \cdot 2^{2n} + a_u b_\ell \cdot 2^n + a_\ell b_u \cdot 2^n + a_\ell b_\ell$ can be computed using 4 multiplications of n-bit integers and 3 additions of 2n-bit integers. Give a different way of computing the product that involves only 3 multiplications of (n+1)-bit integers and a constant number of additions of 2n-bit integers.
- 2. Using the above, give an algorithm for multiplying n-bit integers in time $O(n^{\log_2 3}) = O(n^{1.59})$.

Problem 5. (Asymptotic Notation) True or False? Briefly justify your answers (e.g. in one sentence per part).

- 1. 5n + 6 = O(n).
- 2. $n^2 = O(n^3)$.
- 3. $n^2 = \Omega(n^3)$.
- $4. \ n = O(\log^2 n).$
- 5. $\ln n = \Theta(\log_2 n)$.
- 6. $5^n = 3^{O(n)}$.