AM 106/206: Applied Algebra

Assigned: Wed. Dec. 1, 2010

Problem Set 10

Prof. Salil Vadhan

Due: Fri. Dec. 10, 2010 (2:10 PM sharp)

e You may submit your problem sets in the AM106 in the Maxwell-Dworkin basement, or

electronically by email to am106-hw@seas.harvard.edu. If you use IMTEX, please submit
both the source (.tex) and the compiled file (.pdf). Name your files PS10-yourlastname.

Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Justify your answers except when otherwise specified.

Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students
should confirm that they know how to do them), and those marked [AM206-X] are for AM206
students. However, AM106 students can do a problem marked [AM206-X] instead of one
marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge).
If you wish to keep the option of staying in either AM106 or AM206 open until add/drop
date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Density of Irreducible Polynomials) Let F'=F,, and E = Fy» for some prime

power q.

1. Show that every element a € E is the zero of an irreducible polynomial in F'[x] of degree

dividing n.

. [AM106-A] Deduce that the number of monic irreducible polynomials in F[z] of degree at
most n is at least ¢"/n, and the number of monic irreducible polynomials of degree exactly
n is at least ¢ /n — ¢"/2.

. [AM206-A] Prove that the number of monic irreducible polynomials in F'[x] of degree exactly
n is at least (¢" — 2¢"/?)/n. You may use the Mdbius inversion formula, which says that if

fr9 + N = Rosatisfy g(n) = >y, f(d) for all n > 1, then f(n) = > ,, u(d)g(n/d), where
p:N— {=1,0,1} is defined as follows:

1 if d square-free with an even number of prime factors
wu(d) =< —1 if d square-free with an odd number of prime factors
0 if d not square-free

where a number d is square free if d = p1po - - - pg for distinct primes p1, ..., pg.



Problem 2. (Codes over Small Alphabets) The g-ary Hadamard code is the mapping Had :

IE"q“ — ng taking each m € IF"; to the tuple ((m,v1), (m,va), ..., (m,v)), where vi,... v are a
list of all elements of IF]; and (u,v) = ) u;v;. That is, we view m as describing a linear function
from ]FZ — F, and the codeword is the evaluation of this linear function at all points. This code
has very poor relative rate (k/q¢"*), but it has very good distance (as you will show) and can use

very small alphabet sizes (even ¢ = 2).
1. Show that the relative minimum distance of Had is 1 — 1/q.

2. Combine a Reed-Solomon code over Fy, for some ¢ and a Hadamard code to construct, for
every k = 20 > 4, an error-correcting code Enc : {0,1}* — {0,1}** with relative minimum
distance at least 1/4. (Hint: view elements of {0,1}* as elements of (Fy¢)[*/¢1) encode these
in a Reed-Solomon code, and then encode each resulting symbol in a Hadamard code.)

The above code has much better rate (1/k) than the Hadamard code, but still not constant.
Nevertheless, this same approach of combining two codes (“code concatenation”) is very widely
used, and has been used to construct codes in which the rate, distance, and alphabet size are all
constants independent of the message length k.

Problem 3. (Improved Decoding of Reed—Solomon Codes) Show that there is a polynomial-
time algorithm for Noisy Polynomial Interpolation (see Lecture Notes 22) that works whenever the
number s of agreements is larger than V2dn, improving the 2v/dn bound from lecture. You may
ignore round-off issues in your solution, and treat quantities like \/2n/d as integers. (Hint: do
not use fixed upper bounds on the individual degrees in x and y of the interpolating polynomial
Q(z,y), but rather allow as many monomials as possible for Step 2 to go through.)



