AM 106/206: Applied Algebra

Prof. Salil Vadhan

Problem Set 3

Assigned: Mon. Sept. 25, 2010 Due: Fri. Oct. 1, 2010 (2:10 PM sharp)

- You may submit your problem sets in the AM106 in the Maxwell-Dworkin basement, or electronically by email to am106-hw@seas.harvard.edu. If you use LATEX, please submit both the source (.tex) and the compiled file (.pdf). Name your files PS3-yourlastname.
- Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Justify your answers except when otherwise specified.
- Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students should confirm that they know how to do them), and those marked [AM206-X] are for AM206 students. However, AM106 students can do a problem marked [AM206-X] instead of one marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge). If you wish to keep the option of staying in either AM106 or AM206 open until add/drop date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Cyclic groups [AM106-A]) Which of the following are cyclic groups? For those that are not, justify your answers. For those that are, list all generators.

- 1. \mathbb{Z}_{18} .
- 2. \mathbb{Z}_{8}^{*} .
- 3. \mathbb{Z}_{19}^* .
- 4. D_5 . (Please use the Rot_k and Ref_k notation for elements of D_n from lecture.)
- $5. \mathbb{R}.$

Problem 2. (Subgroups) Draw the subgroup lattices for each of the following groups.

- 1. \mathbb{Z}_{18}
- $2. \mathbb{Z}_8^*.$
- 3. \mathbb{Z}_{19}^* .
- 4. D_5 . (Please use the Rot_k and Ref_k notation for elements of D_n from lecture.)

Problem 3. (Cauchy's Theorem [AM206-A]) Let G be a finite group, and p a prime number. Let S be the set of all p-tuples of group elements (g_0, \ldots, g_{p-1}) whose product $g_0g_1 \cdots g_{p-1}$ equals the identity e. Define an equivalence relation \sim on S where $(g_0, \ldots, g_{p-1}) \sim (h_0, \ldots, h_{p-1})$ if the two p-tuples are cyclic shifts of each other, i.e. there is an $k \in \mathbb{Z}_p$ such that $h_i = g_{i+k \mod p}$ for all $i \in \mathbb{Z}_p$.

- 1. Prove that all of the equivalence classes of \sim are of size p or of size 1, and characterize all of the equivalence classes of size 1.
- 2. Show that if p divides |G|, then the number of equivalence classes of size 1 must be divisible by p. (Hint: analyze |S|.)
- 3. Deduce Cauchy's Theorem: if a prime p divides the order of a finite group G, then G has an element of order p.

Problem 4. (Diffie-Hellman in groups with small factors [AM106-B]) Let $G = \langle g \rangle$ be a cyclic group of order q, and let d be a divisor of q.

- 1. For an element $a = g^x$ of G, show that d divides x if and only if $a^{q/d} = e$. Thus, one can efficiently test whether an element a is a d'th power in G by exponentiation.
- 2. Suppose we choose $x, y, z \in \mathbb{Z}_q$ uniformly at random. Calculate the probability that both g^x and g^{xy} are d'th powers, and the probability that both g^x and g^z are d'th powers. Deduce that the Decisional Diffie-Hellman Assumption is false for G if the (known) order of G has a small factor (e.g. 2).

Problem 5. (Discrete log in square-root time [AM206-B]) Let G be a cyclic group with a known generator g and known order q. Give a randomized algorithm¹ that, on input $a \in G$, with probability at least 1/4 computes $x \in \mathbb{Z}_q$ such that $g^x = a$, using at most $O(\sqrt{q} \cdot \log q)$ multiplications of elements of G. (Hint: choose $x_1, \ldots, x_t, y_1, \ldots, y_t \in \mathbb{Z}_q$ uniformly at random for an appropriate choice of $t = O(\sqrt{q})$ and bound the probability that there is no intersection between the sets $\{g^{x_i}\}$ and $\{a \cdot g^{y_i}\}$. It may be convenient to first bound the probability that 2t uniformly random group elements are all distinct.)

¹A randomized algorithm is one that can "toss coins," and more generally sample random numbers from any desired interval $\{0, \ldots, m-1\}$. Generally we only require such algorithms to compute a correct answer with high probability over their coin tosses. The success probability of a randomized algorithm can usually be amplified by repetition, e.g. repeating your algorithm 10 times will find the correct x with probability $1 - (3/4)^{10} > .94$.