
AM 106/206: Applied Algebra Prof. Salil Vadhan

Problem Set 3

Assigned: Mon. Sept. 25, 2010 Due: Fri. Oct. 1, 2010 (2:10 PM sharp)

• You may submit your problem sets in the AM106 in the Maxwell–Dworkin basement, or
electronically by email to am106-hw@seas.harvard.edu. If you use LATEX, please submit
both the source (.tex) and the compiled file (.pdf). Name your files PS3-yourlastname.

• Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Justify your answers except when otherwise specified.

• Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students
should confirm that they know how to do them), and those marked [AM206-X] are for AM206
students. However, AM106 students can do a problem marked [AM206-X] instead of one
marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge).
If you wish to keep the option of staying in either AM106 or AM206 open until add/drop
date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Cyclic groups [AM106-A]) Which of the following are cyclic groups? For those
that are not, justify your answers. For those that are, list all generators.

1. Z18.

2. Z∗
8.

3. Z∗
19.

4. D5. (Please use the Rotk and Refk notation for elements of Dn from lecture.)

5. R.

Problem 2. (Subgroups) Draw the subgroup lattices for each of the following groups.

1. Z18

2. Z∗
8.

3. Z∗
19.

4. D5. (Please use the Rotk and Refk notation for elements of Dn from lecture.)
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Problem 3. (Cauchy’s Theorem [AM206-A]) Let G be a finite group, and p a prime number.
Let S be the set of all p-tuples of group elements (g0, . . . , gp−1) whose product g0g1 · · · gp−1 equals
the identity e. Define an equivalence relation ∼ on S where (g0, . . . , gp−1) ∼ (h0, . . . , hp−1) if the
two p-tuples are cyclic shifts of each other, i.e. there is an k ∈ Zp such that hi = gi+k mod p for all
i ∈ Zp.

1. Prove that all of the equivalence classes of ∼ are of size p or of size 1, and characterize all of
the equivalence classes of size 1.

2. Show that if p divides |G|, then the number of equivalence classes of size 1 must be divisible
by p. (Hint: analyze |S|.)

3. Deduce Cauchy’s Theorem: if a prime p divides the order of a finite group G, then G has an
element of order p.

Problem 4. (Diffie–Hellman in groups with small factors [AM106-B]) Let G = 〈g〉 be a
cyclic group of order q, and let d be a divisor of q.

1. For an element a = gx of G, show that d divides x if and only if aq/d = e. Thus, one can
efficiently test whether an element a is a d’th power in G by exponentiation.

2. Suppose we choose x, y, z ∈ Zq uniformly at random. Calculate the probability that both gx

and gxy are d’th powers, and the probability that both gx and gz are d’th powers. Deduce
that the Decisional Diffie–Hellman Assumption is false for G if the (known) order of G has a
small factor (e.g. 2).

Problem 5. (Discrete log in square-root time [AM206-B]) Let G be a cyclic group with
a known generator g and known order q. Give a randomized algorithm1 that, on input a ∈ G,
with probability at least 1/4 computes x ∈ Zq such that gx = a, using at most O(

√
q · log q)

multiplications of elements of G. (Hint: choose x1, . . . , xt, y1, . . . , yt ∈ Zq uniformly at random for
an appropriate choice of t = O(

√
q) and bound the probability that there is no intersection between

the sets {gxi} and {a · gyi}. It may be convenient to first bound the probability that 2t uniformly
random group elements are all distinct.)

1A randomized algorithm is one that can “toss coins,” and more generally sample random numbers from any
desired interval {0, . . . , m − 1}. Generally we only require such algorithms to compute a correct answer with high
probability over their coin tosses. The success probability of a randomized algorithm can usually be amplified by
repetition, e.g. repeating your algorithm 10 times will find the correct x with probability 1− (3/4)10 > .94.
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