
AM 106/206: Applied Algebra Prof. Salil Vadhan

Problem Set 4

Assigned: Fri. Oct. 8, 2010 Due: Fri. Oct. 15, 2010 (2:10 PM sharp)

• You may submit your problem sets in the AM106 in the Maxwell–Dworkin basement, or
electronically by email to am106-hw@seas.harvard.edu. If you use LATEX, please submit
both the source (.tex) and the compiled file (.pdf). Name your files PS4-yourlastname.

• Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Justify your answers except when otherwise specified.

• Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students
should confirm that they know how to do them), and those marked [AM206-X] are for AM206
students. However, AM106 students can do a problem marked [AM206-X] instead of one
marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge).
If you wish to keep the option of staying in either AM106 or AM206 open until add/drop
date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Orders of Permutations) What are all the possible orders for elements of S8

and of A8? Justify your answers.

Problem 2. (Generating Sn [AM106-A]) For a group G and elements g1, . . . , gn ∈ G, the
subgroup generated by g1, . . . , gn is defined to be the set of all elements we can obtain by multiplying
the gi’s and their inverses together any number of times. Formally:

〈g1, . . . , gn〉 =
{
gk1
i1
gk2
i2
· · · gkt

it
: t ∈ N, i1, . . . , it ∈ {1, . . . , n}, k1, . . . , kt ∈ Z

}
.

(Note that a cyclic subgroup is a subgroup generated by a single generator g. Here we allow multiple
generators, so these subgroups need not be cyclic.)

Prove that for n ≥ 2, Sn = 〈(12), (12 · · ·n)〉. (Hint: repeatedly use conjugation to obtain all
the transpositions.)

Problem 3. (Isomorphisms of Specific Groups) For each of the following pairs of groups
(G,H), determine whether or not they are isomorphic. If not, determine whether one is isomorphic
to a subgroup of the other. Justify your answers.

1. [AM106-B] Z5 vs. S5.

2. Z∗8 vs. Z∗12.

3. R∗ vs. C∗.

4. [AM206-B] R vs. GL2(R).

1



Problem 4. (From Cayley to Lagrange, Gallian 6.46)

1. Recall that in the proof of Cayley’s Theorem, the isomorphism from a group G to a subgroup
of Sym(G) takes an element g ∈ G to the permutation Tg(x) = gx. Show that for finite G,
the disjoint cycle notation for Tg consists entirely of cycles of length equal to the order of g.

2. Deduce the following corollary of Lagrange’s Theorem: the order of an element g ∈ G divides
the order of the group G.

Problem 5. (Parallelism vs. Memory via Group Theory [AM206-A]) In this you will
use algebraic properties of the group S5 to prove an equivalence between two finite computational
models for evaluating functions f : {0, 1}n → {0, 1}:

• Small-depth Boolean Formulas: These are defined by induction. A depth 0 boolean formula
F on n variables is of the form F (x1, . . . , xn) = xi for some i ∈ [n]. A depth d + 1 boolean
formula is of the form F = (G∧H) or F = ¬G, where G and H are formulas of depth at most
d, ∧ denotes logical AND, and ¬ denotes logical negation. Interpreting 1 as TRUE and 0 as
FALSE, every such formula F (x1, . . . , xn) can be interpreted as a function f : {0, 1}n → {0, 1}.
For example, the formula F = (¬(x1∧x2)∧¬(¬x1∧¬x2)) is a depth 4 formula computing the
function f : {0, 1}2 → {0, 1} where f(00) = f(11) = 0 and f(01) = f(10) = 1 (i.e. f=XOR).
Depth d boolean formulas capture those functions that can be computed by digital circuits
in “parallel time” Θ(d).

• Small-space Computations: A branching program P of width w and length ` on n variables
consists of a start state s0 ∈ [w] (where [w] = {1, . . . , w}), a set of accept states A ⊆ [w], a
sequence of ` indices i1, . . . , i` ∈ [n], and ` transition functions T1, . . . , T` : [w]×{0, 1} → [w].
On an input x ∈ {0, 1}n, the program computes its output P (x) as follows: it computes
states s1, . . . , s` iteratively using the rule sj = Tj(sj−1, xij ), and outputs 1 if s` ∈ A and 0
otherwise. The width of a branching program measures the amount of memory the program
requires (beyond a time counter), and the length measures the amount of time it requires.

It can be shown that that for any constant w, every function computed by a branching programs
of width w and length ` can also be computed by a boolean formula of depth O(log `). You will
show the converse: every function computed by a boolean formula of depth d can be computed by
a width 5 branching program of length at most 4d.

To do this, you will use an intermediate algebraic computational model. An S5-product program
of length ` on n variables consists of a sequence of ` triples (i1, σ

(0)
1 , σ

(1)
1 ), (i2, σ

(0)
2 , σ

(1)
2 ), . . . , (i`, σ

(0)
` , σ

(1)
` ) ∈

[n]×S5×S5, as well as an accept permutation α ∈ S5\{ε}. We say such a program computes a func-

tion f : {0, 1}n → {0, 1} if for every input x = x1 . . . xn ∈ {0, 1}n, the product σ
(xi1

)
1 σ

(xi2
)

2 · · ·σ(xi`
)

`

equals the identity ε if f(x) = 0 and equals α if f(x) = 1.

1. Show that there are β, γ ∈ S5 such that β, γ, and βγβ−1γ−1 are all 5-cycles.

2. Show that if α, α′ are conjugates and there is an S5-product program of length ` computing
a function f with accept permutation α, then there is also such a program whose accept
permutation is α′.

2



3. Prove by induction on d that if a function is computable by a boolean formula of depth d, then
it is computable by an S5-product program of length at most 4d with an accept permutation
that is a 5-cycle.

4. Prove that every function computable by an S5-product program of length ` is also computable
by a width 5 branching program of length `.

3


