AM 106/206: Applied Algebra

Prof. Salil Vadhan

Problem Set 7

Assigned: Fri. Oct. 29, 2010 Due: Fri. Nov. 5, 2010 (2:10 PM sharp)

- You may submit your problem sets in the AM106 in the Maxwell-Dworkin basement, or electronically by email to am106-hw@seas.harvard.edu. If you use LATEX, please submit both the source (.tex) and the compiled file (.pdf). Name your files PS7-yourlastname.
- Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Justify your answers except when otherwise specified.
- Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students should confirm that they know how to do them), and those marked [AM206-X] are for AM206 students. However, AM106 students can do a problem marked [AM206-X] instead of one marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge). If you wish to keep the option of staying in either AM106 or AM206 open until add/drop date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (The Si(111) Reconstructed Face) Attached is a piece of the reconstructed Si(111) face, which is repeated infinitely to form a 2-D crystal F. (This face is obtained by cutting a 3-D silicon crystal along a different plane than the one giving the Si(100) face seen in lecture.)

- 1. On the attached diagram, draw two vectors that generate the translation lattice of F.
- 2. Find and mark a point p of maximal rotational symmetry, and determine the group Point(F, p).
- 3. Use the flowchart in Gallian Figure 28.18 to classify Isom(F, p) among the 17 2-D crystallographic groups.
- 4. Using generators for Point(F, p), determine whether the diffusivity of the Si(111) face is isotropic.

Problem 2. (From Translations and Point Groups to the Full Symmetry Group) Let E_2 be the 2-dimensional Euclidean group, and $F: X \to \mathbb{R}^2$ be a 2-dimensional crystal.

- 1. Let E_2^+ denote the set of rotations in E_2 , i.e. the set of isometries of the form $T(x) = \text{Rot}_{\theta} x + b$, for $\theta \in [0, 2\pi)$ and $b \in \mathbb{R}^2$. Show that E_2^+ is a subgroup of E_2 , and that it is of index 2.
- 2. Let $\operatorname{Isom}(F)^+ = \operatorname{Isom}(F) \cap E_2^+$. Show that either $\operatorname{Isom}(F)^+ = \operatorname{Isom}(F)$ or $\operatorname{Isom}(F)^+$ is a subgroup of $\operatorname{Isom}(F)$ and that it is of index 2. Similarly, for a point $p \in \mathbb{R}^2$, if we define $\operatorname{Point}(F,p)^+ = \operatorname{Point}(F,p) \cap E_2^+$ then $\operatorname{Point}(F,p)^+$ either equals $\operatorname{Point}(F,p)$ or is a subgroup

of Point(F, p) of index 2. (Hint: these statements are have nothing to do with geometry, and generalize to studying the intersection H^+ of arbitrary subgroups G^+, H of a group G such that $[G: G^+] = 2$.)

- 3. Let $Rot(F) = \{Rot_{\theta} : \exists b \text{ s.t. } T(x) = Rot_{\theta}x + b \text{ is in } Isom(F)\}$. Show that Rot(F) is a cyclic group generated by Rot_{θ^*} for the smallest positive value of θ^* such that $Rot_{\theta^*} \in Rot(F)$.
- 4. Prove that if p is taken to be a point of highest rotational symmetry, then

$$\operatorname{Isom}(F)^+ = \{T_1 \circ T_2 : T_1 \in \operatorname{Trans}(F), T_2 \in \operatorname{Point}(F, p)^+\} \stackrel{\text{def}}{=} \operatorname{Trans}(F) \circ \operatorname{Point}(F, p)^+.$$

(For notational simplicity, you may take assume that p = 0.)

- 5. Deduce that if p is a point of highest rotational symmetry, then one of the following cases must hold:
 - (a) Isom(F) does not contain a reflection or glide-reflection, and Isom(F) = Trans(F) \circ Point(F,p).
 - (b) Point(F, p) contains a reflection, and Isom $(F) = \text{Trans}(F) \circ \text{Point}(F, p)$.
 - (c) Isom(F) contains a reflection or glide-reflection R, Point(F, p) does not contain a reflection, and Isom(F) = (Trans(F) \circ Point(F, p) \cup (Trans(F) \circ Point(F, p) \circ R).

In particular, we can obtain generators for Isom(F) by taking generators for Point(F, p) (at most 2 needed), generators for Trans(F) (exactly 2 needed), and possibly an additional reflection R.

Problem 3. (Characteristic and Order of Finite Fields [AM106])

- 1. Show that if R is an integral domain of nonzero characteristic p, then every nonzero element of R has additive order p.
- 2. Use the classification of finite abelian groups to show that if F is a finite field of characteristic p, then the order (i.e. size) of F is p^n for some $n \in \mathbb{N}$.

Problem 4. (Adjoining Square Roots) Which of the following rings are integral domains? fields? Justify your answers.

- 1. [AM106-A] $\mathbb{Z}_{15}[\sqrt{2}]$. (Elements are of the form $(a+b\sqrt{2})$ with $a,b \in \mathbb{Z}_{15}$, addition defined by $(a+b\sqrt{2})+(c+d\sqrt{2})=((a+c) \bmod 15)+((b+d) \bmod 15)\sqrt{2}$, and multiplication defined by $(a+b\sqrt{2})(c+d\sqrt{2})=((ac+2bd) \bmod 15)+((ad+bc) \bmod 15)\sqrt{2}$.)
- 2. [AM106-A] $\mathbb{Z}_{11}[\sqrt{2}]$. (Defined similarly to previous item.)
- 3. [AM106-A] $\mathbb{Z}_7[\sqrt{2}]$. (Defined similarly to previous item.)
- 4. [AM206-A] Characterize when $\mathbb{Z}_n[\sqrt{k}]$ is a field for arbitrary positive integers n and k. Your characterization should take the form of " $\mathbb{Z}_n[\sqrt{k}]$ is a field if and only if n has Property X and the equation ' $\cdots = \cdots$ ' (in one variable x) has no solution in \mathbb{Z}_n ."