
AM 106/206: Applied Algebra Prof. Salil Vadhan

Problem Set 8

Assigned: Sun. Nov. 14, 2010 Due: Fri. Nov. 19, 2010 (2:10 PM sharp)

• You may submit your problem sets in the AM106 in the Maxwell–Dworkin basement, or
electronically by email to am106-hw@seas.harvard.edu. If you use LATEX, please submit
both the source (.tex) and the compiled file (.pdf). Name your files PS8-yourlastname.

• Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Justify your answers except when otherwise specified.

• Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students
should confirm that they know how to do them), and those marked [AM206-X] are for AM206
students. However, AM106 students can do a problem marked [AM206-X] instead of one
marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge).
If you wish to keep the option of staying in either AM106 or AM206 open until add/drop
date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Ideals and Factor Rings) For each of the following rings R and subsets I ⊆ R,
determine whether I is a subring of R and whether I is an ideal of R. If I is an ideal, do the
following:

• Find a set of generators for I of minimal size, and determine whether I is principal.

• Determine the factor ring R/I by giving an appropriate homomorphism from R to a familiar
ring S.

• Determine whether I is maximal, and if not, find a maximal ideal containing I.

1. R = Z× Z, I = {(a, b) : a ≡ b (mod 6)}.

2. R = Z[x], I = {p(x) : p(3) = 0}.

3. R = R[x], I = {p(x) : p(0) = 0 and p(7) = 0}.

4. R = R[x], I = {p(x) : p(0) = 0 or p(7) = 0}.

5. R = C, I = R.

6. R = Q[x], I = 〈x3 + x2 − 2x− 2, x2 + 2x+ 1〉.

7. R = Z96, I = {0, 32, 64}.
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Problem 2. (Frobenius homomorphism, Gallian 15.44+) Let R be a commutative ring
with unity and characteristic p, for a prime p.

1. Show that the map ϕ : x 7→ xp is a ring homomorphism from R to itself.

2. Show that ϕ is an automorphism of R (i.e. an isomorphism of R with itself) in case R is a
finite field. (Hint: show that in this case, it suffices to prove ker(ϕ) = {0}.)

3. Find a ring R of characteristic p such that ϕ is not an automorphism of R. (Hint: look at
infinite R.)

Problem 3. (Computations in F [x] [AM106-A]) Note that the two parts of this problem
are over different fields.

1. List all of the monic, irreducible polynomials of degree up to and including 5 over Z2[x].

2. Use the polynomial analogue of the Euclidean Algorithm to find a single polynomial h(x)
such that the ideal 〈h(x)〉 equals the ideal 〈x6 + 2x4 + 2x3 + 2x+ 1, x5 +x2 + 2x+ 1〉 in Z3[x].
Show your work.

Problem 4. (Polynomial Factorization [AM206-A]) In this problem, you will see one of the
main ideas that go into polynomial-time randomized algorithms for polynomial factorization. Let
F be a finite field of odd order q, and let p(x) = p1(x)p2(x), where p1(x), p2(x) ∈ F[x] are distinct
irreducible polynomials of degree n.

1. Show that F[x]/〈p(x)〉 is isomorphic to F[x]/〈p1(x)〉×F[x]/〈p2(x)〉. What theorem about the
integers is this analogous to?

2. Show that if we pick a random polynomial f(x) ∈ F[x] of degree smaller than 2n, then with
probability at least 1/2, either gcd(f(x), p(x)) ∈ {p1(x), p2(x)} or gcd(f(x)(q

n−1)/2−1, p(x)) ∈
{p1(x), p2(x)}. You may use the fact that the group of units in any finite field is cyclic. (Hint:
think of f(x) as a random element of F[x]/〈p(x)〉.) Thus we can factor p with high probability
by choosing several random f ’s and computing these gcd’s.

Problem 5. (Multivariate polynomials) Let R be a commutative ring with unity. The ring
R[x1, . . . , xn] of polynomials over R in indeterminates x1, . . . , xn consists of all expressions of the
form p(x1, . . . , xn) =

∑
i1,...,in≥0 ai1,...,inx

i1
1 · · ·xin

n , where ai1,...,in ∈ R, only finitely many of the
ai1,...,in are nonzero, and addition and multiplication are defined as usual. The degree of such a
polynomial p is the maximum of i1 + · · ·+ in over all nonzero coefficients ai1,...,in .

1. Exhibit a nonzero degree 2 polynomial p(x1, x2) ∈ Z[x1, x2] that has infinitely many zeroes.

2. Despite the above, it can be shown that a low-degree polynomial cannot have too many roots
in any finite “cube”. Specifically, show that if R is an integral domain, S ⊆ R is finite,
and p(x1, . . . , xn) ∈ R[x1, . . . , xn] is a nonzero polynomial of degree d, then the fraction of
points α = (α1, . . . , αn) ∈ Sn on which p(α) = 0 is at most d/|S|. (Hint: group terms as
p(x1, . . . , xn) =

∑
i qi(x1, . . . , xn−1)xi

n, and use induction on n.) Thus we can test whether a
low-degree multivariate polynomial is zero by evaluating it on random points from Sn.

3. Find an ideal in Q[x1, x2] that is not principal.
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