Problem Set 9

Assigned: Mon. Nov. 22, 2010
Due: Fri. Dec. 3, 2010 (2:10 PM sharp)

- You may submit your problem sets in the AM106 in the Maxwell-Dworkin basement, or electronically by email to am106-hw@seas.harvard.edu. If you use $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, please submit both the source (.tex) and the compiled file (.pdf). Name your files PS9-yourlastname.
- Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Justify your answers except when otherwise specified.
- Problems marked [AM106] or [AM106-X] are for AM106 students (though AM206 students should confirm that they know how to do them), and those marked [AM206-X] are for AM206 students. However, AM106 students can do a problem marked [AM206-X] instead of one marked [AM106-X] (for the same value of X) if they wish (out of interest, or for a challenge). If you wish to keep the option of staying in either AM106 or AM206 open until add/drop date, then you should do all problems marked [AM106] and all problems marked [AM206-X].

Problem 1. (Adjoining Two Square Roots) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is defined to be the smallest field containing \mathbb{Q} and the elements $\sqrt{2}$ and $\sqrt{3}$. That is, it consists of all real numbers of the form $p(\sqrt{2}, \sqrt{3}) / q(\sqrt{2}, \sqrt{3})$ where $p(x, y), q(x, y) \in \mathbb{Q}[x, y]$ are bivariate polynomials and $q(\sqrt{2}, \sqrt{3}) \neq 0$.

1. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
2. Determine $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]$, and give a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}. (Hint: $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq$ $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
3. Find the minimal polynomial for $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. (Hint: write powers of $\sqrt{2}+\sqrt{3}$ in the basis you found above, and find a linear dependency.)
4. Find 3 distinct fields F such that $\mathbb{Q} \subsetneq F \subsetneq \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Problem 2. (Splitting Fields) Determine a splitting field $F \subseteq \mathbb{C}$ for the polynomial $x^{3}-2$ over \mathbb{Q}. Compute $[F: \mathbb{Q}]$ and describe a basis for F over \mathbb{Q}.

Problem 3. (Abstract Extension Fields [AM106]) Write out complete addition and multiplication tables for $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. (Due to commutativity, you only need to write the upper-triangular portion of these tables, including the main diagonal.)

Problem 4. (Bivariate Interpolation) Let F be a field and $F[x, y]^{m, n}$ denote the set of bivariate polynomials over \mathbb{F} whose degree in x is at most m and whose degree in y is at most n.

1. What is the dimension of $F[x, y]^{m, n}$ as a vector space over F ? Exhibit a basis for $F[x, y]^{m, n}$ over F.
2. Suppose $S \subseteq F^{2}$ is a set of fewer than $(m+1)(n+1)$ points in F^{2}. Show that there is a nonzero polynomial $p(x, y) \in F[x, y]^{m, n}$ such that $p(a, b)=0$ for all $(a, b) \in S$. Explain how, given S, we could compute such a polynomial $p(x, y)$ using poly $(n+m)$ operations over F.
