
AM 106: Applied Algebra Salil Vadhan

Lecture Notes 23

December 4, 2018

1 Error-Correcting Codes

• Goal: encode data so that it can be recovered even after much of it has been corrupted.

– Useful for storage (hard disks, DVDs), communication (cell phone, satellite).

• Def: An code is an injective mapping Enc : Σk → Σn for some finite alphabet Σ, message
length k and block length n.

• Def: For two strings x, y ∈ Σn, we define their Hamming distance to be

D(x, y) = #{i ∈ [n] : xi 6= yi}.

• Def: A code Enc is t-error-correcting if there is a decoding function Dec : Σn → Σk such that
for every message m ∈ Σk and every received word r ∈ Σn such that D(r,Enc(m)) ≤ t, we
have Dec(r) = m.

• Example: repetition code n = k · `, Enc(m) = (m,m,m, . . . ,m) is t-error-correcting if
` ≥ 2t+ 1.

• Proposition: A code Enc is t-error-correcting if and only if
its minimum distance minm 6=m′ D(Enc(m),Enc(m′)) is greater than 2t.

Proof:

Note: the minimum distance only depends on the set of codewords C = {Enc(m) : m ∈
Σk} ⊆ Σn and not on how we map elements of Σk to Σn. Thus people often use the word
error-correcting code to refer to the set C rather than the function Enc.

• Goals: Construct error-correcting codes for arbitrarily large message lengths k and:

1. Maximize the relative decoding distance δ = t/n, or equivalently the relative minimum
distance. Ideally, these should be constants independent of k, e.g. δ = .1).

2. Maximize the rate ρ = k/n (ideally constant independent of k, e.g. ρ = .1).

1

3. Minimize the alphabet size |Σ| (ideally constant independent of k, e.g. Σ = {0, 1}).
4. Have efficient (e.g. polynomial time or even linear time) encoding and decoding algo-

rithms. (Note that decoding algorithm in proposition above is not efficient in general —
may require enumerating all strings at distance at most t from r.)

2 Reed–Solomon Codes

• Reed-Solomon Code: The q-ary Reed–Solomon code of message length k and blocklength n
is a code RS : Fk

q → Fn
q with alphabet Σ = Fq. We view the message m = (m0, . . . ,mk−1) ∈ Fk

q

as coefficients of a polynomial pm(x) =
∑k−1

i=0 mix
i of degree at most d = k−1. The encoding

is RS(m) = (pm(α1), . . . , pm(αn)) where α1, . . . , αn are fixed distinct elements of Fq. (Thus
we need q ≥ n.)

• Proposition: The minimum distance of the Reed-Solomon code is n− k + 1, and thus it is
t-error-correcting for t = b(n− k)/2c.
Proof:

• Thus, taking e.g. n = 2k, we have constant rate (ρ = 1/2) and constant relative decoding
distance (δ = t/n = 1/4). The only downside is the nonconstant alphabet size (q ≥ n), but
this can be improved by combining Reed–Solomon codes with other codes (as you may see in
section).

• The minimum distance n − k + 1 of a Reed–Solomon code is the best possible for codes
Enc : Σk → Σn over any alphabet Σ. Indeed, since there are more choices for messages
m ∈ Σk than there are choices for the first k−1 symbols of Enc(m), the Pigeonhole Principle
says that there must be two distinct messages m,m′ of length k such that Enc(m) and Enc(m′)
agree on the first k − 1 symbols. That is, D(Enc(m),Enc(m′)) ≤ n− (k − 1).

• Efficiency of RS Codes: The encoding algorithm for Reed–Solomon codes is efficient. It
just requires evaluating a degree d polynomial at n points, which can be done with O(nd)
operations in Fq using the naive algorithm, and O(n log n) operations using Fast Fourier
Transforms over Fq. Decoding is nontrivial. Given a received word r ∈ Fn

q , we want to find

a message m ∈ Fk
q such that RS(m) = (pm(α1), . . . , pm(αn)) has distance at most t from

r = (β1, . . . , βn). This amounts to solving the following problem.

• Noisy Polynomial Interpolation: Given n pairs (α1, β1), . . . , (αn, βn) ∈ Fq × Fq with
α1, . . . , αn distinct, we want to find the (unique) polynomial p of degree at most d = k − 1
such that p(αi) = βi for at least n− t = d(n+k)/2e values of i (if such a polynomial p exists).

• Thm: The Noisy Polynomial Interpolation problem can be solved in polynomial time.

Proof: The first step of the algorithm is to find polynomials W (x) and E(x) such that:

– W (αi) = βi · E(αi) for i = 1, . . . , n.

2

– W has degree strictly smaller than n− t = d(n+ k)/2e.
– E has degree at most t = b(n− k)/2c.
– At least one of W or E is nonzero.

We can do this by solving a system of linear equations in the field F . With the degree
constraints, we have n− t coefficients to choose for W and t+ 1 coefficients to choose for E,
so a total of n+1 unknowns. We have n conditions W (αi) = βi ·E(αi), each of which imposes
a linear constraint on the coefficients of W and E. Consequently we can find a solution where
not all the coefficients are zero by Gaussian elimination, which takes polynomial time in finite
fields.

Once we have polynomials W (x) and E(x), we claim that W (x) = p(x)E(x) in Fq[x]. This
is because both sides are polynomials of degree smaller than n − t (note that the degree
of p(x)E(x) is at most t + k − 1 ≤ n − t), yet they agree in at least n − t locations, so
they must be identical as polynomials. Indeed, for every i such that p(αi) = βi, we have
W (αi) = βiE(αi) = p(αi)E(αi). Thus, we can find p(x) simply by doing long division of
W (x) by E(x), and p(x) will be the quotient (with no remainder). Note that from our
guarantee that W (x) or E(x) is nonzero and the equation W (x) = p(x)E(x), it follows that
E(x) is nonzero and that the division will have a zero remainder. If the algorithm ends up
with the zero polynomial for E(x) or with a nonzero remainder during the division, it means
that no solution p(x) exists.

• Reed–Solomon Codes and versions of the above decoding algorithm are widely used in prac-
tice, e.g. on CDs and in satellite communications.

3

