AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 11
October 11, 2018

1 Cosets

- Def: For a group $G, H \leq G$, and $a \in G$, the left coset of H containing a is the set $a H=$ $\{a h: h \in H\}$. Similarly, the right coset of H containing a is $H a=\{h a: h \in H\}$.
- Examples:
$-G=\mathbb{Z}, H=3 \mathbb{Z}=\{\ldots,-6,-3,0,3,6, \ldots\}$. (Note: $3 \mathbb{Z}$ is not the left coset of \mathbb{Z} containing 3. Why not?)
$-G=S_{3}, H=\{\varepsilon,(23)\}$.
$-G=\mathbb{R}^{3}, H=\{(x, y, z): z=0\}$.
- Thm: If $H \leq G$, then the cosets of H form a partition of G into disjoint subsets, each of size $|H|$. Proof:

1. Every element $a \in G$ is contained in at least one coset:
2. Every element $a \in G$ is contained in only one coset, i.e. if $a \in b H$, then $a H=b H$.
3. The size of each coset $a H$ is the same as the size of H.

- A picture:
- Another View: define a relation R_{H} on G by $a \sim b$ iff $a^{-1} b \in H(\Leftrightarrow b \in a H \Leftrightarrow a H=b H)$. This is an equivalence relation, whose equivalence classes are exactly the cosets of H. That is, $[a]_{R_{H}}=a H$.
- Example: On $\mathbb{Z}, a \equiv b(\bmod n)$ iff $a-b \in n \mathbb{Z}$. The congruence classes modulo n are exactly the cosets of $n \mathbb{Z}:[a]_{n}=a+n \mathbb{Z}$.

2 Lagrange's Theorem and Related Results

- Def: For a group G and $H \leq G$, the index of H in $G[G: H]$ is the number of distinct left cosets of H in G.
- Corollaries of Theorem above: For a finite group G :
- If $H \leq G$, then $[G: H]=|G| /|H|$.
- (Lagrange's Thm) The order of a subgroup divides the order of the group. That is, if $H \leq G$, then $|H|$ divides $|G|$.
- The order of an element divides the order of the group. That is, if $a \in G$, then the order of a divides $|G|$.
- Every group of prime order is cyclic. That is, if $|G|$ is prime, then G is cyclic.
$-a^{|G|}=e$ for every $a \in G$.
- (Fermat's Little Thm) $a^{p} \equiv a \bmod p$ for every $a \in \mathbb{Z}$ and prime p.
* Starting point for all (randomized and deterministic) polynomial-time primality testing algorithms!

3 Orbits and Stabilizers

- Def: For a permutation group $G \leq \operatorname{Sym}(S)$ and a point $s \in S$,
- The orbit of s under G is $\operatorname{orb}_{G}(s)=\{\varphi(s): \varphi \in G\}$,
- The stabilizer of s in G is $\operatorname{stab}_{G}(s)=\{\varphi \in G: \varphi(s)=s\}$.
- Examples: $G=D_{5} \leq \operatorname{Sym}\left(\mathbb{R}^{2}\right)$.
$-s=$ center of pentagon.
- $s=$ non-center point on vertical axis.
$-s=$ point 5° clockwise from vertical axis.
- Orbit-Stabilizer Theorem (Thm. 7.3): $\left|\operatorname{orb}_{G}(s)\right|=\left[G: \operatorname{stab}_{G}(s)\right]$.
- Orbit-Stabilizer Thm follows from:

Lemma: For $\varphi, \psi \in G, \varphi(s)=\psi(s)$ iff $\varphi \operatorname{stab}_{G}(s)=\psi \operatorname{stab}_{G}(s)$.
Thus distinct points $\varphi(s)$ in the orbit are in one-to-one correspondence with distinct cosets $\varphi \operatorname{stab}_{G}(s)$.

Proof:

