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1 More Theory of Cyclic Groups

• Reading: Gallian Chapter 4.

• Thms 4.2–4.3 (Subgroups of Cyclic Groups): Let G = 〈g〉 be a cyclic group of order
n. Then:

1. Every subgroup of G is cyclic.

2. For every integer k, 〈gk〉 = 〈ggcd(k,n)〉.
3. If d|n, then 〈gd〉 is cyclic of order n/d.

In particular, the subgroups of G are in one-to-one correspondence with the divisors d of n.

Proof: in Gallian.

• Example: subgroups of G = 〈g〉 of order 12, Z12, and Z∗
13.

• Corollary:

1. If G = 〈g〉 is cyclic of order n, then gk generates G iff gcd(k, n) = 1.

2. k generates Zn iff gcd(k, n) = 1.

2 Computation in Cyclic Groups

• Computations in a finite cyclic group G = 〈g〉 are easy if we can “access” the exponents.

• For what follows, let G = 〈g〉 a cyclic group of known order q with a known generator
g in which group elements can be represented by bitstrings of length n = O(log2 q), and
where multiplication (given a, b ∈ G, compute ab ∈ G) and inversion (given a ∈ G, compute
a−1 ∈ G) can be done in efficiently (in time poly(n)).

– Example: G = Z∗
p for an n-bit prime p.

• Exponentiation in G: given x ∈ Zq, compute gx ∈ G.

– Can be done with O(log q) = O(n) multiplications in G. How?
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So going from an exponent x to the corresponding element of G is an “easy” problem. How-
ever, going from an element of G to the corresponding exponent x, as in the following problem,
seems to be much harder.

• Discrete Logarithm Problem in G: given a ∈ G (selected uniformly at random), compute
the (unique) x ∈ Zq such that gx = a.

– Naive algorithm: O(q log q) = O(n · 2n) multiplications in G.

– PS3: O(
√
q log q) = O(2n/2 · n) multiplications in G.

– Best known for G = Z∗
p: time 2O(n1/3 log2/3 n).

– Best known for G = “elliptic curve group”: time O(2n/2).

• ⇒ exponentiation seems to be a “one-way function,” easy in forward direction, hard in reverse
direction.
⇒ useful for cryptography (build algorithms that are easy to use but hard to break)

3 Cryptography from Cyclic Groups

One of the most basic goals in cryptography is to enable two parties (e.g. you and an online mer-
chant) to communicate securely over an insecure communication channel (e.g. send your credit card
number over the Internet without an eavesdropping hacker being able to learn it). Traditionally,
it was always assumed that the two honest parties would need a means to securely share a “secret
key” in advance, which they then would use to encrypt their messages. In 1976, Diffie and Hellman
published a landmark paper, which showed how secure communication on an insecure channel could
be done even between parties that hadn’t shared any secrets in advance. Their construction relied
on cyclic groups, and was based on the (conjectured) gap in complexity between exponentiation
and discrete logarithms. Specifically, they gave the following protocol for establishing a shared
secret key on an insecure communication channel.

• Diffie–Hellman Key Exchange Protocol for parties A (=Alice) and B (=Bob) to generate
a shared secret over an insecure communication channel.

1. A chooses random x ∈ Zq, computes a = gx and sends it to B.

2. B chooses random y ∈ Zq, computes b = gy and sends it to A.

3. Both parties compute the shared key k = gxy = bx = ay.

• Security of Diffie–Hellman

– Eavesdropping adversary E (=Eve) is given a = gx and b = gy and needs to compute
gxy. It is not obvious how to do this without computing discrete logarithms.

– Usually we actually want the adversary to not be able to learn anything about the shared
secret k; that is, it should “look like” a uniformly random element of Zq to the adversary.
This idea is formalized by the following assumption (which is a stronger assumption than
just assuming that discrete logarithms are hard).
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– Decisional Diffie–Hellman (DDH) Assumption: No efficient (e.g. poly(n)-time)
algorithm E can distinguish (gx, gy, gxy) from (gx, gy, gz) for uniformly random and
independent x, y, z ∈ Zq. That is,

|Pr[E(gx, gy, gxy) = 1]− Pr[E(gx, gy, gz) = 1]| ≤ ε(n),

for some “negligible” function ε(n)→ 0.

– On PS3, you will show that the DDH false if q = |G| has small factors, so we usually take
|G| prime. For example, we take G to be the subgroup of order q in Z∗

p where p = 2q+ 1
and p, q are both large primes (e.g. around 1000 bits long).

We can also use the above ideas to construct a public-key encryption scheme. This replaces
the key-exchange interaction above with A just generating a public key and secret key, placing the
public key in a public directory, and keeping the secret key to herself. Now, when anyone (such as
B) wants to send her a message, they can encrypt it using her public key. Decryption, however,
will require the secret key, which only A possesses.

• El Gamal Public-Key Encryption Scheme

1. A chooses random x ∈ Zq, publishes a = gx as her public key, and keeps x as her secret
key.

2. To send a message m ∈ G, B chooses random y ∈ Zq, sends b = gy and c = m·k = m·gxy.

3. After receiving (b, c), A can recover m.

• Security of El Gamal

– If DDH is true, then encryptions of any two messages m0,m1 ∈ G are indistinguishable
to an efficient adversary E: An encryption of m0 is (gx, gy,m0 · gxy), which is indistin-
guishable from (gx, gy,m0 · gz), which has the same distribution as (gx, gy, gw), where
x, y, w, z are all uniformly random and independent elements of G. And similarly for
m1.

– Key fact: Multiplying a fixed group element (m0) by a uniformly random group element
(gz) gives a uniformly random group element (gw).

– No partial information about the message leaks! Even if the adversary knows you’re
going to send one of two messages (e.g. “buy” or “sell”), it cannot distinguish their
encryptions.

• For more on cryptography, take CS 127 or see Katz & Lindell “Introduction to Modern
Cryptography.”

3


