AM 106: Applied Algebra

Lecture Notes 12

1 Direct Products

- Reading: Gallian Ch. 8, 11.
- Def: For groups G_{1}, G_{2}, their (external) direct product is the group

$$
G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right): g_{1} \in G_{1}, g_{2} \in G_{2}\right\},
$$

under componentwise multiplication.

- Gallian writes $G_{1} \oplus G_{2}$ instead of $G_{1} \times G_{2}$.
- Generalizes naturally to define $G_{1} \times G_{2} \times \cdots G_{n}$.

- Examples:

- \mathbb{R}^{n}
- \mathbb{C}
$-\mathbb{Z}_{3} \times \mathbb{Z}_{5}$
$-\mathbb{R}^{*}$
$-\mathbb{Z}_{2}^{n}$ vs. $\mathbb{Z}_{2^{n}}$

2 Classifying Finite Abelian Groups

- Theorem 11.1 (Classification of Finite Abelian Groups): Every finite abelian group G is isomorphic to a product of cyclic groups of prime power order. That is,

$$
G \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \mathbb{Z}_{p_{2}^{e_{2}}} \times \cdots \times \mathbb{Z}_{p_{k}^{e_{k}}},
$$

where $k \in \mathbb{N}, p_{1}, \ldots, p_{k}$ are primes (not necessarily distinct!), and e_{1}, \ldots, e_{k} are positive integers.

Moreover, this factorization is unique up to the order of the factors. That is, if $\mathbb{Z}_{p_{1} e_{1}} \times \cdots \times$ $\mathbb{Z}_{p_{k}^{e_{k}}} \cong \mathbb{Z}_{q_{1}^{f_{1}}} \times \cdots \times \mathbb{Z}_{q_{\ell}^{f_{\ell}}}$, then there is a bijection $\sigma:[k] \rightarrow[\ell]$ such that $p_{i}=q_{\sigma(i)}$ and $e_{i}=f_{\sigma(i)}$ for all i.

- Example: every finite abelian group of order 36 is isomorphic to exactly one of the following four groups:
- We won't have time to prove the classification theorem, but you can find the proof in Gallian (Ch. 11). We will see, however, to obtain the factorization for the groups \mathbb{Z}_{n} and \mathbb{Z}_{n}^{*}, using the following important theorem.
- Chinese Remainder Theorems: Let m, n be integers such that $\operatorname{gcd}(m, n)=1$.

1. The map $x \mapsto(x \bmod m, x \bmod n)$ is a bijection from $\mathbb{Z}_{m n}$ to $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. ("Numbers smaller than $m n$ are uniquely determined by their residues modulo m and n.")
2. $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
3. $\mathbb{Z}_{m n}^{*} \cong \mathbb{Z}_{m}^{*} \times \mathbb{Z}_{n}^{*}$.

- Proof:

1. Inverse: $(y, z) \mapsto a y+b z \bmod m n$ for integers a, b such that $a \equiv 1 \bmod m, b \equiv 0 \bmod m$, $a \equiv 0 \bmod n, b \equiv 1 \bmod n$. How to find a, b ?
2. $((x+y) \bmod m n) \bmod m=(x+y) \bmod m=(x \bmod m+y \bmod m) \bmod m$, and similarly $((x+y) \bmod m n) \bmod n=(x \bmod n+y \bmod n) \bmod n$.
3. Similar.

- Examples: \mathbb{Z}_{15} and \mathbb{Z}_{15}^{*}.
- Consequence: Can decompose the groups \mathbb{Z}_{N} and \mathbb{Z}_{N}^{*} using the factorization of N. If $N=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, then

$$
\begin{aligned}
\mathbb{Z}_{N} & \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{e_{k}}} . \\
\mathbb{Z}_{N}^{*} & \cong \mathbb{Z}_{p_{1}}^{*} \times \cdots \times \mathbb{Z}_{p_{k}}^{*} .
\end{aligned}
$$

- Note that for the case of $G=\mathbb{Z}_{N}$, this immediately provides the factorization claimed in the Classification of Finite Abelian Groups.
- Example: $\mathbb{Z}_{24} \cong$
- Q: Why are we not done for \mathbb{Z}_{N}^{*} ?
- For \mathbb{Z}_{N}^{*}, we need to use the following theorem (which you may assume without proof).
- Theorem:

1. If p is an odd prime and e is a positive integer, then $\mathbb{Z}_{p^{e}}^{*}$ is cyclic of order $\phi\left(p^{e}\right)=$ $(p-1) \cdot p^{e-1}$. That is, $\mathbb{Z}_{p^{e}}^{*} \cong \mathbb{Z}_{(p-1) \cdot p^{e-1}}$.
2. $\mathbb{Z}_{2}^{*} \cong$
3. $\mathbb{Z}_{4}^{*} \cong$
4. For $e \geq 3, \mathbb{Z}_{2^{e}}^{*} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{e-2}}$.

- Example: $\mathbb{Z}_{72}^{*} \cong$
- Message: If we know the factorization of N, we can understand the group \mathbb{Z}_{N}^{*} very well. But if we are given just N, factorization seems difficult in general (no fast algorithms known)!
- Many cryptographic algorithms (e.g. RSA) capitalize on the fact it seems difficult to take advantage of the structure of \mathbb{Z}_{N}^{*} without knowing the factorization of N.

