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1 Direct Products

• Reading: Gallian Ch. 8, 11.

• Def: For groups G1, G2, their (external) direct product is the group

G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2},

under componentwise multiplication.

– Gallian writes G1 ⊕G2 instead of G1 ×G2.

– Generalizes naturally to define G1 ×G2 × · · ·Gn.

• Examples:

– Rn

– C

– Z3 × Z5

– R∗

– Zn2 vs. Z2n

2 Classifying Finite Abelian Groups

• Theorem 11.1 (Classification of Finite Abelian Groups): Every finite abelian group
G is isomorphic to a product of cyclic groups of prime power order. That is,

G ∼= Zpe11 × Zpe22 × · · · × Zpekk ,

where k ∈ N, p1, . . . , pk are primes (not necessarily distinct!), and e1, . . . , ek are positive
integers.
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Moreover, this factorization is unique up to the order of the factors. That is, if Zpe11 × · · · ×
Zpekk

∼= Z
q
f1
1

× · · · × Z
q
f`
`

, then there is a bijection σ : [k] → [`] such that pi = qσ(i) and

ei = fσ(i) for all i.

• Example: every finite abelian group of order 36 is isomorphic to exactly one of the following
four groups:

• We won’t have time to prove the classification theorem, but you can find the proof in Gallian
(Ch. 11). We will see, however, to obtain the factorization for the groups Zn and Z∗

n, using
the following important theorem.

• Chinese Remainder Theorems: Let m,n be integers such that gcd(m,n) = 1.

1. The map x 7→ (x mod m,x mod n) is a bijection from Zmn to Zm × Zn. (“Numbers
smaller than mn are uniquely determined by their residues modulo m and n.”)

2. Zmn ∼= Zm × Zn.

3. Z∗
mn
∼= Z∗

m × Z∗
n.

• Proof:

1. Inverse: (y, z) 7→ ay+ bz mod mn for integers a, b such that a ≡ 1 mod m, b ≡ 0 mod m,
a ≡ 0 mod n, b ≡ 1 mod n. How to find a, b?

2. ((x+ y) mod mn) mod m = (x+ y) mod m = (x mod m+ y mod m) mod m, and simi-
larly ((x+ y) mod mn) mod n = (x mod n+ y mod n) mod n.

3. Similar.

• Examples: Z15 and Z∗
15.

• Consequence: Can decompose the groups ZN and Z∗
N using the factorization of N . If

N = pe11 · · · p
ek
k , then

ZN ∼= Zpe11 × · · · × Zpekk .

Z∗
N
∼= Z∗

p
e1
1
× · · · × Z∗

p
ek
k

.
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• Note that for the case of G = ZN , this immediately provides the factorization claimed in the
Classification of Finite Abelian Groups.

– Example: Z24
∼=

– Q: Why are we not done for Z∗
N?

• For Z∗
N , we need to use the following theorem (which you may assume without proof).

• Theorem:

1. If p is an odd prime and e is a positive integer, then Z∗
pe is cyclic of order φ(pe) =

(p− 1) · pe−1. That is, Z∗
pe
∼= Z(p−1)·pe−1 .

2. Z∗
2
∼=

3. Z∗
4
∼=

4. For e ≥ 3, Z∗
2e
∼= Z2 × Z2e−2 .

• Example: Z∗
72
∼=

• Message: If we know the factorization of N , we can understand the group Z∗
N very well.

But if we are given just N , factorization seems difficult in general (no fast algorithms known)!

– Many cryptographic algorithms (e.g. RSA) capitalize on the fact it seems difficult to
take advantage of the structure of Z∗

N without knowing the factorization of N .
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