
AM 106: Applied Algebra Salil Vadhan

Lecture Notes 4

September 12, 2018

1 Measuring Complexity

Def: Algorithm A runs in time T : N → R+ if for every n ∈ N and every input x of length n,
running A(x) takes at most T (n) steps.

• n is length of input (e.g. in binary or decimal) of the input numbers, not the numbers
themselves. The length n of a positive integer x is n = blog2 xc+ 1.

• This definition captures worst-case analysis, meaning that we require that the running time
is at most T (n) on all inputs of length n (even the “worst” ones).

The goals of most work on algorithms (cs124) and computational complexity theory (cs121,
cs221) are to:

• Find the “fastest” possible algorithm for a problem.

• Distinguish easy problems (ones that have “fast” algorithms) from hard problems (ones that
do not have any “fast” algorithms).

Typically, linear-time algorithms (e.g. T (n) = 10n or grade-school addition) and quadratic
time algorithms (e.g. T (n) = 3n2 + 60n, grade-school multiplication) are considered “fast”, but
exponential time (e.g. T (n) = (1.2)n) are considered “slow”.

In order for our measure of running time to not depend too much on the specific model of
computation (what constitutes a single “step,” or the hardware of our computer) or on the rep-
resentation of the data (eg decimal vs. binary numbers), we need to allow some slackness. The
following is very convenient notation for ignoring constant factors and focusing on dominant terms
(useful in many areas of mathematics, not just the analysis of algorithms).

Def (O-notation): For f, g : N→ R+, we write f = O(g) if there is a constant c > 0 and n0 ∈ N
such that f(n) ≤ c · g(n) for all n ≥ n0.

• Informally f = O(g) means “f grows no more quickly than g”

• Despite the strange (but convenient) notation, this is simply a binary relation on functions.
You should think of f = O(g) as simply “f � g” for a binary relation �.

Examples:

• n3 = O(13n3 + 2n2 − 4n + 2)?

• 13n3 + 2n2 − 4n + 2 = O(n3)?

1

• n10 = O(13n3 + 2n2 − 4n + 2)?

• 13n3 + 2n2 − 4n + 2 = O(n10)?

• 13n3 + 2n2 − 4n + 2 = O(2n)?

• 2n = O(13n3 + 2n2 − 4n + 2)?

• Not all functions comparable: ∃f, g s.t. f 6= O(g) and g 6= O(f).

When O(g) is used in the middle of an expression, it is shorthand for some function f such that
f = O(g). Thus, 13n3 + 2n2 − 4n + 2 = 13n3 + O(n2).

Proposition:

1. If limn→∞ f(n)/g(n) = c <∞ then f = O(g).

2. If limn→∞ f(n)/g(n) =∞ then f 6= O(g).

Q: why aren’t these “if and only if”?
When we express the running time of an algorithm using O notation, it allows us to ignore

low-level details such as whether summing 3 digits takes 1 step or 5 steps:

• Grade-school addition algorithm takes time O(n), as does subtraction.

• Kindergarten multiplication (via repeated addition) can take time more than 2n.

• Grade-school multiplication and division algorithms take time O(n2). But there are asymp-
totically faster algorithms (see AM206 PS1)! Best known is roughly O(n log n). (This can be
an AM206 essay topic.) It is a long-standing open question whether multiplication can be
done in time O(n).

Some other useful asymptotic notation:

• f = Ω(g) if g = O(f). (“f grows at least as quickly as g”)

• f = Θ(g) if f = O(g) and g = O(f) (“f and g grow at the same rate”, equivalence relation
on functions)

• log3 n = Θ(log7 n).

• 6n2 + 7 = Θ(23n2 − 6n + 8).

Polynomial Time. Before we said that linear and quadratic time are both considered “fast”.
More generally, we often look for algorithms that run in polynomial time, namely time O(nc)
for some constant c. This is a coarse theoretical approximation to “feasibility.” While not all
polynomial-time algorithms are practical, this notion has the advantage that it is very robust to
changes in computational model, representation of input, and composition of algorithms.

2

2 The Euclidean Algorithm

Goal: compute gcd(x, y) for any two given integers x, y, not both zero.

A first attempt is to simply work from the definition of gcd.

TrialDivisionGCD(x, y):

1. Assume WLOG x ≥ y > 0.

2. for z = min{x, y} down to 0,

• if z|x and z|y, then halt and output z.

Note that now we are describing algorithms at a higher level than before. Since we have already
seen that there are efficient (polynomial-time) algorithms for basic arithmetic, we can use these
operations freely in our algorithms. Thus, we usually do not need to refer directly to the decimal
representations of the inputs, and can simply treat them as integers. (However, when we analyze
the running time of our algorithm, we need to take into account not only the number of times we
perform basic arithmetic operations, but also the sizes of the numbers on which these operations
are performed — as this affects the time taken by the operations.)

Q: Does TrialDivisionGCD run in polynomial time?

To obtain a more efficient algorithm, we instead show how to reduce computing gcd(x, y) to
computing gcd(x′, y′) for “significantly smaller” numbers x′, y′. This is done via the following two
lemmas:

Lemma 1: If y > 0, then gcd(x, y) = gcd(y, x mod y).

Proof: We’ll show that the set of common divisors of x and y is the same as the set of divisors of
y and x mod y. Write x = qy + r, where r = x mod y. So if d divides y and r, then it also divides
y and qy + r = x. And if d divides y and x, then it also divides y and x− qy = r.

Lemma 2: If 0 < y ≤ x, then x mod y < x/2.

Proof: Case analysis.
If y ≤ x/2, then x mod y < y ≤ x/2.
If x ≥ y > x/2, then x mod y = x− y < x/2.

This gives rise to the following algorithm.

Euclid(x, y):

1. Assume WLOG that x ≥ y ≥ 0.

2. If y = 0, output x.

3

3. Otherwise, output gcd(y, x mod y).

An equivalent formulation (replacing the recursion with a loop):

Euclid(x, y):

1. Assume WLOG x ≥ y > 0.

2. Set i = 1, x1 = x, x2 = y.

3. Repeat until xi+1 = 0:

(a) Compute xi+2 = xi mod xi+1 (using a division algorithm).

(b) Increment i.

4. Output xi.

Example: Euclid(60, 33)

Let’s analyze the Euclidean Algorithm. Lemma 1 implies that the algorithm correctly computes
the gcd function. For the running time, we have:

Proposition: If x and y are n-bit numbers, then Euclid(x, y) performs at most 2n divisions, each
being on numbers of bit-length at most n. In particular, the running time of Euclid is O(n3).

Proof: Let D(z) denote the maximum number of divisions used in Euclid(x, y) on inputs x, y
whose product is at most z. Then D(z) ≤ D(z/2) + 1 and D(1) = 1. Thus D(z) ≤ (log2 z) + 1. If
x and y are n-bit numbers, then xy < 2n · 2n = 22n, so we use at most D(xy) < 2n + 1 divisions.
(On PS2, you will improve this bound on the number of divisions.)

The Extended Euclidean Algorithm: In addition, to computing gcd(x, y), this algorithm
computes the coefficients s, t such that gcd(x, y) = sx + ty.

• Can be recovered from quotients and remainders in divisions in Euclidean algorithm.

• In addition to computing each xi, write it as an integer linear combination of x and y. If
xi = six + tiy, xi+1 = si+1x + ti+1y, and xi = qixi+1 + xi+2, then

xi+2 = xi − qixi+1 = (si − qisi+1)x + (ti − qiti+1)y.

Example: ExtendedEuclid(60, 33)

4

3 Algorithms for Primality and Factorization

• Algorithms for Primality: Given an integer x, is it prime?

– Trial division: can take up to 2n/2 trials on n-bit integers. (Q: why not 2n?)

– Randomized polynomial-time algorithms: O(n3) (very practical, taught in many algo-
rithms courses)

– Deterministic polynomial-time algorithm (2002!): O(n6.01) (not yet practical)

• Algorithms for Factoring: Given an integer x, find its prime factorization.

– Best fully proven algorithm: time 2O(
√
n logn).

– Best heuristic algorithm: time 2O(n1/3(logn)2/3).

– Largest factored RSA challenge (x = pq for random n/2-bit primes p, q): n = 640 (< 200
digits) in 2005. In contrast, testing even much larger p, q for primality and multiplying
takes only seconds on a laptop.

– Gaps of this type are the basis for cryptography, e.g. construct encryption algorithms
that are “easy” to use but “hard” to break.

– Hardness of factoring is a conjecture that might be wrong!

5

