AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 5

September 18, 2018

1 Groups

- Reading: Gallian Ch. 2
- **Def:** A group is a set G with a binary operation on G (i.e. $\circ: G \times G \to G$) satisfying the following:
 - 0. (Closure) If $a, b \in G$, then $a \circ b \in G$.
 - 1. (Associativity) $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in G$.
 - 2. (Identity) There is an element $e \in G$ (called the *identity*) s.t. $e \circ a = a \circ e = a$ for all $a \in G$.
 - 3. (Inverses) For all $a \in G$, there is an element $b \in G$ (called the *inverse* of a) such that $a \circ b = b \circ a = e$.
- Note: We don't require that $a \circ b = b \circ a$. A group that satisfies this for all $a, b \in G$ is called *Abelian* or *commutative*.

2 Examples

- See table on next page. We give some more details on some of the examples here.
- Group of Units modulo n (Gallian Example 2.11)
 - $\{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$ under multiplication modulo n.
 - Gallian notation: U(n).
 - Our notation (more standard): \mathbb{Z}_n^* .
 - Inverse of a:
 - * Why does it exist?
 - * How to compute it?
- $n \times n$ matrices, with real entries:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & & a_{nn} \end{pmatrix}.$$

Notation	Set	Operation	Closure?	Associative?	Identity?	Inverses?	Group?	Commutative?
	Z	+						
		+						
	Z	+						
	odd integers	+						
	even integers	+						
	Z	max						
	Z	I						
	Z	×						
	0	×						
**	{0} \ 0	×						
	+0	×						
	\mathbb{R}^n	+ componentwise						
	$\mathbb{R}^n \setminus \{(0,\ldots,0)\}$	× componentwise						
\mathbb{Z}_n	$\{0, \dots, n-1\}$ or $\{[0]_n, \dots, [n-1]_n\}$	$+ \bmod n$ $[a]_n + [b]_n = [a+b]_n$						
	$\{1,\dots,n\}$	$n \mod x$						
$\mathbb{Z}_n^*, U(n)$	${a \in \mathbb{Z}_n : \gcd(a, n) = 1}$	$n \mod x$						
$M_n(\mathbb{R})$	$n \times n$ real matrices	+ entrywise						
	$n \times n$ real matrices	matrix mult.						
$GL_n(\mathbb{R})$	$n \times n$ invertible real matrices	matrix mult.						
S_n	permutations $[n] \mapsto [n]$	composition						
Sym(S)	permutations $S \mapsto S$	composition						
D_n	symmetries of regular n -gon	composition						

- Defines a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$ by Av = w, where $w_i = \sum_j a_{ij} v_j = \langle r_i, v \rangle$ and r_i is i'th row of A.
- -A + B has (i, j)'th entry $a_{ij} + b_{ij}$.
- AB has (i,j)'th entry $\sum_k a_{ik} b_{kj} = \langle r_i, c_j \rangle$ if r_i is i'th row of A and c_j is j'th column of B.

3 Basic Properties of Groups

- Thm 2.1 (Identity is Unique): In every group G, there is only one identity element. Proof:
- Thm 2.3 (Inverses are Unique): For every group G and every element $a \in G$, there is only one inverse of a in G (typically denoted a^{-1}). **Proof:** similar to uniqueness of the identity.
- Multiplicative Notation for Groups
 - Group operation: $a \cdot b$ or just ab
 - Identity: 1 or e
 - Inverse of $a: a^{-1}$
 - -a multiplied n times: a^n
- Additive Notation for Groups
 - Group operation: a + b
 - Identity: 0
 - Inverse of a: -a
 - -a added n times: na
 - Only used for abelian groups!
- Thm 2.2 (Left-cancellation and Right-cancellation): In a group:
 - 1. $ab = ac \Rightarrow b = c$.
 - 2. $ba = ca \Rightarrow b = c$.
- Thm 2.4 (Shoes-Socks Property): In a group, $(ab)^{-1} = b^{-1}a^{-1}$. Proof: omitted