Lecture Notes 5

1 Groups

- Reading: Gallian Ch. 2
- Def: A group is a set G with a binary operation on G (i.e. $\circ: G \times G \rightarrow G$) satisfying the following:

0. (Closure) If $a, b \in G$, then $a \circ b \in G$.
1. (Associativity) $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in G$.
2. (Identity) There is an element $e \in G$ (called the identity) s.t. $e \circ a=a \circ e=a$ for all $a \in G$.
3. (Inverses) For all $a \in G$, there is an element $b \in G$ (called the inverse of a) such that $a \circ b=b \circ a=e$.

- Note: We don't require that $a \circ b=b \circ a$. A group that satisfies this for all $a, b \in G$ is called Abelian or commutative.

2 Examples

- See table on next page. We give some more details on some of the examples here.
- Group of Units modulo n (Gallian Example 2.11)
- $\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}$ under multiplication modulo n.
- Gallian notation: $U(n)$.
- Our notation (more standard): \mathbb{Z}_{n}^{*}.
- Inverse of a :
* Why does it exist?
* How to compute it?
- $n \times n$ matrices, with real entries:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{n 1} & \cdots & & a_{n n}
\end{array}\right) .
$$

Notation	Set	Operation	Closure?	Associative?	Identity?	Inverses?	Group?	Commutative?
	\mathbb{Z}	+						
	\mathbb{R}	+						
	\mathbb{N}	$+$						
	odd integers	+						
	even integers	+						
	\mathbb{Z}	max						
	\mathbb{Z}	-						
	\mathbb{Z}	\times						
	Q	\times						
\mathbb{Q}^{*}	$\mathbb{Q} \backslash\{0\}$	\times						
	\mathbb{Q}^{+}	\times						
	\mathbb{R}^{n}	+ componentwise						
	$\mathbb{R}^{n} \backslash\{(0, \ldots, 0)\}$	\times componentwise						
\mathbb{Z}_{n}	$\begin{aligned} & \{0, \ldots, n-1\} \\ & \text { or }\left\{[0]_{n}, \ldots,[n-1]_{n}\right\} \end{aligned}$	$+\bmod n$ $[a]_{n}+[b]_{n}=[a+b]_{n}$						
	$\{1, \ldots, n\}$	$\times \bmod n$						
$\mathbb{Z}_{n}^{*}, U(n)$	$\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}$	$\times \bmod n$						
$M_{n}(\mathbb{R})$	$n \times n$ real matrices	+ entrywise						
	$n \times n$ real matrices	matrix mult.						
$G L_{n}(\mathbb{R})$	$n \times n$ invertible real matrices	matrix mult.						
S_{n}	permutations $[n] \mapsto[n]$	composition						
$\operatorname{Sym}(S)$	permutations $S \mapsto S$	composition						
D_{n}	symmetries of regular n-gon	composition						

- Defines a linear transformation from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $A v=w$, where $w_{i}=\sum_{j} a_{i j} v_{j}=\left\langle r_{i}, v\right\rangle$ and r_{i} is i 'th row of A.
$-A+B$ has $(i, j)^{\prime}$ th entry $a_{i j}+b_{i j}$.
- $A B$ has $(i, j)^{\prime}$ th entry $\sum_{k} a_{i k} b_{k j}=\left\langle r_{i}, c_{j}\right\rangle$ if r_{i} is i 'th row of A and c_{j} is j 'th column of B.

3 Basic Properties of Groups

- Thm 2.1 (Identity is Unique): In every group G, there is only one identity element. Proof:
- Thm 2.3 (Inverses are Unique): For every group G and every element $a \in G$, there is only one inverse of a in G (typically denoted a^{-1}).
Proof: similar to uniqueness of the identity.
- Multiplicative Notation for Groups
- Group operation: $a \cdot b$ or just $a b$
- Identity: 1 or e
- Inverse of a : a^{-1}
- a multiplied n times: a^{n}
- Additive Notation for Groups
- Group operation: $a+b$
- Identity: 0
- Inverse of $a:-a$
- a added n times: $n a$
- Only used for abelian groups!
- Thm 2.2 (Left-cancellation and Right-cancellation): In a group:

1. $a b=a c \Rightarrow b=c$.
2. $b a=c a \Rightarrow b=c$.

- Thm 2.4 (Shoes-Socks Property): In a group, $(a b)^{-1}=b^{-1} a^{-1}$. Proof: omitted

