AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 14
October 23, 2018

- Reading: Gallian Chs. 10, 27.

1 Homomorphisms

- Def: For groups G, H, and mapping $\varphi: G \rightarrow H$ is a homomorphism if for all $a, b \in G$, we have $\varphi(a b)=\varphi(a) \varphi(b)$.
- Note: we don't require that φ is one-to-one or onto!
- Def: For a homomorphism $\varphi: G \rightarrow H$,
- the image of φ is $\operatorname{Im}(\varphi)=\varphi(G)=\{\varphi(g): g \in G\} \leq H$.
- the kernel of φ is $\operatorname{Ker}(\varphi)=\{g \in G: \varphi(g)=\varepsilon\} \triangleleft G$.
- Thm 10.3: If $\varphi: G \rightarrow H$ is a homomorphism, then $G / \operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$.

Picture:

- Examples:

Domain	Range	Mapping	Homo.?	Image	Kernel
\mathbb{Z}	\mathbb{Z}_{n}	$x \mapsto x \bmod n$			
\mathbb{Z}_{n}	\mathbb{Z}_{d}	$x \mapsto x \bmod d$			
\mathbb{R}^{n}	\mathbb{R}^{n}	$x \mapsto M x, M$ a matrix			
$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	$(x, y) \mapsto x y$			
S_{n}	$\{ \pm 1\}$	$\sigma \mapsto \operatorname{sign}(\sigma)$			
\mathbb{R}	\mathbb{C}^{*}	$x \mapsto e^{2 \pi i x}$			
$\mathbb{Z}_{3} \times \mathbb{Z}_{5}$	\mathbb{Z}_{3}	$(x, y) \mapsto x$			
G	G / N, where $N \triangleleft G$	$g \mapsto g N$			

- Properties of Homomorphisms:

1. $\varphi\left(\varepsilon_{G}\right)=\varepsilon_{H}$.
2. $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
3. order $(\varphi(a))$ divides order (a).

- Properties of Images:

1. $\varphi(G)$ is a subgroup of H.
2. G cyclic $\Rightarrow \varphi(G)$ cyclic.
3. G abelian $\Rightarrow \varphi(G)$ abelian.

- Properties of Kernels:

1. $\operatorname{Ker}(\varphi)$ is normal subgroup of G.

- Can prove that K is normal by finding a homomorphism φ s.t. $\operatorname{Ker}(\varphi)=K$.

2. $\varphi(a)=\varphi(b) \Leftrightarrow b^{-1} a \in \operatorname{Ker}(\varphi) \Leftrightarrow a \operatorname{Ker}(\varphi)=b \operatorname{Ker}(\varphi)$.
3. φ injective (one-to-one) if and only if $\operatorname{Ker}(\varphi)=\{\varepsilon\}$.

- Proof of Thm $10.3(G / \operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi))$:

2 Isometries

- Motivation: most of the applications of group theory to the physical sciences are through the study of the symmetry groups of physical objects (e.g. molecules or crystals). Understanding the symmetries helps in understanding the objects' physical properties and in determining the structure of the objects from measurements or images.
- Recall that symmetry groups of geometric objects are defined in terms of isometries, so we begin by understanding those.
- Def: An isometry of \mathbb{R}^{n} is a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that for every $x, y \in \mathbb{R}^{n}$, we have $\|T(x)-T(y)\|=\|x-y\|$.
- Isometries are always permutations (bijections).
- The set of isometries of \mathbb{R}^{n} forms a group under composition, known as the Euclidean Group E_{n}.
- Isometries preserve angles: $\langle T(x)-T(z), T(y)-T(z)\rangle=\langle x-z, y-z\rangle$.
- Although most physical objects live in \mathbb{R}^{3}, we'll focus on objects in \mathbb{R}^{2}. Symmetry of 2-D objects is useful in surface physics. Everything we'll discuss has generalizations to \mathbb{R}^{3}.

- Linear-algebraic Description of Isometries:

- Fact: The isometries of \mathbb{R}^{n} are exactly the maps of the form $T(x)=A x+b$, where A is an $n \times n$ orthogonal matrix (i.e., $A A^{t}=I$, where A^{t} is the transpose of A) and $b \in \mathbb{R}^{n}$.
- In \mathbb{R}^{2}, the possible orthogonal matrices A are:

$$
\operatorname{Rot}_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \text { and } \operatorname{Ref}_{\theta}=\left(\begin{array}{cc}
-\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right),
$$

for $\theta \in[0,2 \pi) . \operatorname{Rot}_{\theta}$ is a clockwise rotation around the origin by angle $\theta . \operatorname{Ref}_{\theta}$ is a reflection through the axis that is the y-axis rotated clockwise by angle $\theta / 2$.

- Classification of Isometries $T(x)=A x+b$ of \mathbb{R}^{2} :
- $A=\operatorname{Rot}_{0}=I: T$ is a translation.
- $A=\operatorname{Rot}_{\theta}$ for $\theta \in(0,2 \pi): T$ is a clockwise rotation by θ degrees about the point $(I-A)^{-1} b$. ($I-A$ is invertible because A has no fixed points.)
- $A=\operatorname{Ref}_{\theta}, b$ orthogonal to the axis ℓ of reflection: T is a reflection through the axis $\ell+b / 2$.
- $A=\operatorname{Ref}_{\theta}, b$ parallel to axis of reflection: T is a glide-reflection:
- $A=\operatorname{Ref}_{\theta}, b$ neither parallel nor perpendicular to axis of reflection: T is a glide-reflection along the axis $\ell+b^{\prime} / 2$, where b^{\prime} is the component of b perpendicular to the axis of reflection.
- Q: What are the orders of each of the above elements (in the group of isometries of \mathbb{R}^{2} under composition)?

