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• Reading: Gallian Chs. 10, 27.

1 Homomorphisms

• Def: For groups G, H, and mapping ϕ : G → H is a homomorphism if for all a, b ∈ G, we
have ϕ(ab) = ϕ(a)ϕ(b).

– Note: we don’t require that ϕ is one-to-one or onto!

• Def: For a homomorphism ϕ : G→ H,

– the image of ϕ is Im(ϕ) = ϕ(G) = {ϕ(g) : g ∈ G} ≤ H.

– the kernel of ϕ is Ker(ϕ) = {g ∈ G : ϕ(g) = ε}CG.

• Thm 10.3: If ϕ : G→ H is a homomorphism, then G/Ker(ϕ) ∼= Im(ϕ).
Picture:

• Examples:

Domain Range Mapping Homo.? Image Kernel

Z Zn x 7→ x mod n

Zn Zd x 7→ x mod d

Rn Rn x 7→Mx, M a matrix

Z× Z Z (x, y) 7→ xy

Sn {±1} σ 7→ sign(σ)

R C∗ x 7→ e2πix

Z3 × Z5 Z3 (x, y) 7→ x

G G/N , where N CG g 7→ gN

• Properties of Homomorphisms:

1. ϕ(εG) = εH .

2. ϕ(a−1) = ϕ(a)−1.

3. order(ϕ(a)) divides order(a).

• Properties of Images:

1. ϕ(G) is a subgroup of H.
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2. G cyclic ⇒ ϕ(G) cyclic.

3. G abelian ⇒ ϕ(G) abelian.

• Properties of Kernels:

1. Ker(ϕ) is normal subgroup of G.

– Can prove that K is normal by finding a homomorphism ϕ s.t. Ker(ϕ) = K.

2. ϕ(a) = ϕ(b) ⇔ b−1a ∈ Ker(ϕ) ⇔ aKer(ϕ) = bKer(ϕ).

3. ϕ injective (one-to-one) if and only if Ker(ϕ) = {ε}.

• Proof of Thm 10.3 (G/Ker(ϕ) ∼= Im(ϕ)):

2 Isometries

• Motivation: most of the applications of group theory to the physical sciences are through the
study of the symmetry groups of physical objects (e.g. molecules or crystals). Understanding
the symmetries helps in understanding the objects’ physical properties and in determining
the structure of the objects from measurements or images.

• Recall that symmetry groups of geometric objects are defined in terms of isometries, so we
begin by understanding those.

• Def: An isometry of Rn is a function T : Rn → Rn such that for every x, y ∈ Rn, we have
‖T (x)− T (y)‖ = ‖x− y‖.

– Isometries are always permutations (bijections).

– The set of isometries of Rn forms a group under composition, known as the Euclidean
Group En.

– Isometries preserve angles: 〈T (x)− T (z), T (y)− T (z)〉 = 〈x− z, y − z〉.
– Although most physical objects live in R3, we’ll focus on objects in R2. Symmetry of

2-D objects is useful in surface physics. Everything we’ll discuss has generalizations to
R3.

• Linear-algebraic Description of Isometries:

– Fact: The isometries of Rn are exactly the maps of the form T (x) = Ax+ b, where A is
an n× n orthogonal matrix (i.e., AAt = I, where At is the transpose of A) and b ∈ Rn.

– In R2, the possible orthogonal matrices A are:

Rotθ =

(
cos θ sin θ
− sin θ cos θ

)
, and Refθ =

(
− cos θ sin θ
sin θ cos θ

)
,

for θ ∈ [0, 2π). Rotθ is a clockwise rotation around the origin by angle θ. Refθ is a
reflection through the axis that is the y-axis rotated clockwise by angle θ/2.

• Classification of Isometries T (x) = Ax+ b of R2:

2



– A = Rot0 = I: T is a translation.

– A = Rotθ for θ ∈ (0, 2π): T is a clockwise rotation by θ degrees about the point
(I −A)−1b. (I −A is invertible because A has no fixed points.)

– A = Refθ, b orthogonal to the axis ` of reflection: T is a reflection through the axis
`+ b/2.

– A = Refθ, b parallel to axis of reflection: T is a glide-reflection:

– A = Refθ, b neither parallel nor perpendicular to axis of reflection: T is a glide-reflection
along the axis ` + b′/2, where b′ is the component of b perpendicular to the axis of
reflection.

• Q: What are the orders of each of the above elements (in the group of isometries of R2 under
composition)?
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