Salil Vadhan

Lecture Notes 2

1 Divisibility

- Reading: Gallian Chapter 0.
- Thm 0.1 ("Division Algorithm"): For $a, b \in \mathbb{Z}$ with $b>0$, there exist unique integers q and r with $0 \leq r<b$ such that $a=q b+r$.

Proof:

- Algorithmic Note: Despite its name, the theorem statement does not provide an "algorithm." Even though it tells us that q and r exist, it does not tell us how to compute them given a and b. However, in the proof, there is an implicit, but inefficient, algorithm. What is it?
- Def: We say that integer b divides integer a (written $b \mid a)$ if $a=q b$ for some integer q.
- Q: Which integers divide all integers?
- Q: Which integers are divisible by all integers?
- Def: For two integers that are not both zero, their greatest common divisor $\operatorname{gcd}(a, b)$ is the largest integer d such that $d \mid a$ and $d \mid b$. If $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.
- Thm 0.2 (GCD is a Linear Combination): For two integers a, b not both zero, $\operatorname{gcd}(a, b)=$ $a s+b t$ for some integers s, t. Moreover, $\operatorname{gcd}(a, b)$ is the smallest positive integer of this form. Example: $\operatorname{gcd}(10,24)=$

Proof:

- Algorithmic Note: Like with the Division Algorithm, the statement of Thm 0.2 does not tell us how to compute the integers s and t, but there is an algorithm implicit in the proof.
- Corollary: if integers a and b are relatively prime, then there exist integers s and t such that $a s+b t=1$.
Example: $\operatorname{gcd}(11,15)=$

2 Primes and Factorization

- Def: An integer n is prime if $n \notin\{0, \pm 1\}$ and the only divisors of n are ± 1 and $\pm n$.
$- \pm 2, \pm 3, \pm 5, \pm 7, \pm 11 \ldots$
- Unlike Gallian we allow negative numbers to be prime.
- Euclid's Lemma: If p is a prime and a, b are integers such that $p \mid a b$, then $p \mid a$ or $p \mid b$. Proof:
- Fundamental Thm of Arithmetic: Every integer n other than 0 and ± 1 can be written as the product of primes $n=p_{1} p_{2} \cdots p_{r}$. Moreover, this factorization is unique up to the order of the p_{i} 's and their signs. That is, if $n=p_{1} p_{2} \cdots p_{r}$ and $n=q_{1} q_{2} \cdots q_{s}$ where the p_{i} 's and q_{i} 's are primes, then $r=s$ and there is a permutation $\pi:\{1, \ldots, r\} \rightarrow\{1, \ldots, s\}$ such that $p_{i}= \pm q_{\pi(i)}$ for all i.
Proof:

