Lecture Notes 1

September 4, 2018

1 Course Overview

• Algebra is the study of *sets* with *binary operations*, such as:

Set	Operation
integers	addition & multiplication
reals	"
$n \times n$ matrices	"
polynomials	22
vectors	addition
<i>n</i> -bit strings	bitwise XOR
permutations over $\{1, \ldots, n\}$	composition
symmetries of a crystal	"

- In addition to studying these specific sets & operations individually, we identify general *properties* shared by many of them, such as:
 - commutativity: $a \cdot b = b \cdot a$
 - inverses (e.g. -a for addition, a^{-1} for multiplication)
 - unique factorization
- By *abstracting* such properties, algebra unifies our understanding of many disparate mathematical structures.
- Abstract algebra is useful in many science and engineering applications. Three that we will cover in this course:
 - Crystallography: the symmetry group of a crystal gives information about its physical properties.
 - Cryptography: encrypting data so that only the intended recipient can decrypt.
 - Error-correcting codes: encoding data so that it can be recovered from errors.

2 The Integers

- Reading: Gallian Chapter 0.
- The *integers* are $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}.$
- The natural numbers are $\mathbb{N} = \{0, 1, 2, \ldots\}$.

- Three (equivalent) forms of induction:
 - Well-ordering Principle: every nonempty subset of \mathbb{N} has a least element.
 - Standard Induction (Thm 0.4): if $0 \in S$ and for all $n \in \mathbb{N}$ we have $n \in S \Rightarrow n + 1 \in S$, then S contains all of N. (Induction can also be started at an arbitrary integer $a \in \mathbb{Z}$ instead of 0; see text.)
 - Strong Induction (Thm 0.5): if $0 \in S$ and for all $n \in \mathbb{N}$ we have $\{0, \ldots, n\} \subseteq S \Rightarrow n+1 \in S$, then S contains all of \mathbb{N} .
- Induction usually formulated in terms of sequences of mathematical statements $P(0), P(1), \ldots$, e.g. $P(n) = (1 + \cdots + n) = n \cdot (n+1)/2$. Correspondence to versions in terms of sets (Thms 0.4,0.5) is $S = \{n : P(n) \text{ true}\}$.
- **Proposition:** For all $n \in \mathbb{N}$, $1 + 2 + \cdots + n = \frac{n \cdot (n+1)}{2}$.

Proof by Induction:

• Thm 0.4: The Well-ordering Principle implies Standard Induction.

Proof:

• Other directions are left as an exercise.