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Reading: Gallian Chapters 6 and 7

1 Isomorphisms

• Q: When are two groups the “same” up to the names of elements?

• Examples:

– Z2 and the group G = {x, y} with the following Cayley table:

◦ x y

x y x
y x y

.

– Any infinite cyclic group and Z.

– Any cyclic group of order n and Zn.

– n-dimensional real vector space and Rn

• Def: For groups G and H, an isomorphism from G to H is a mapping ϕ : G→ H such that

1. ϕ is a bijection (i.e. one-to-one and onto).

2. for every a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b). (Note that ab is computed using the operation of
G, and ϕ(a)ϕ(b) using the operation of H.)

If there exists an isomorphism from G to H, we say that G and H are isomorphic and write
G ∼= H.

• Comments

– Gallian writes G ≈ H, but G ∼= H is more standard notation than G ≈ H.

– Isomorphism is an equivalence relation on groups.

• More Examples

– S4 ∼= D8?

1



– S4 ∼= Z24?

– (R,+) ∼= (R+, ·)?

• Thm: If A and B are the same size (i.e. there is a bijection π : A → B), then Sym(A) ∼=
Sym(B).

– Proof: Consider the map ϕ : Sym(A)→ Sym(B) given by σ 7→ π◦σ◦π−1 (“conjugation
by π”)

– Example: A = {1, 2, 3, 4, 5, 6, 7}, B = {a, b, c, d, e, f, g}, σ = (15)(236)(47).

– Important special case: A = B. Then for each permutation π of A, conjugation by π is
isomorphism of Sym(A) with itself — an automorphism of Sym(A). In general, for any
element π of a group G, σ 7→ π ◦ π−1 is an automorphism of G.

• Isomorphisms preserve all “group-theoretic properties” — properties that can be described
in terms of the group operation and numbers of elements of the group (but not the specific
names of those elements).

• Examples (from Thms 6.2, 6.3:) If ϕ : G→ H is an isomorphism, then

1. ϕ(e) = e.

2. for all g ∈ G, ϕ(g−1) = ϕ(g)−1.

3. order(ϕ(g)) = order(g).

4. if G is abelian, then H is abelian

5. if G is cyclic, then H is cyclic

6. if G′ ≤ G, then ϕ(G′)
def
= {ϕ(g) : g ∈ G′} ≤ H.

...

2 Cayley’s Theorem

• Def: We write G . H if G is isomorphic to a subgroup of H. (Equivalently, there is a
function ϕ : G→ H satisfying all of the properties of an isomorphism except for being onto.)

• Example: Dn . Sn.
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• Cayley’s Theorem: For every group G, G . Sym(G).

– Every group is (isomorphic to) a permutation group!

– The subgroups of Sn include all finite groups.

• Proof of Cayley’s Thm:

– Example: Z5 . Sym({0, 1, 2, 3, 4}).

3 Cosets

• Def: For a group G, H ≤ G, and a ∈ G, the left coset of H containing a is the set aH =
{ah : h ∈ H}. Similarly, the right coset of H containing a is Ha = {ha : h ∈ H}.

• Examples:

– G = Z, H = 3Z = {. . . ,−6,−3, 0, 3, 6, . . .}. (Note: 3Z is not the left coset of Z contain-
ing 3. Why not?)

– G = S3, H = {ε, (23)}.

– G = R3, H = {(x, y, z) : z = 0}.

• Thm: If H ≤ G, then the cosets of H form a partition of G into disjoint subsets, each of size
|H|.
Proof:
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1. Every element a ∈ G is contained in at least one coset:

2. Every element a ∈ G is contained in only one coset, i.e. if a ∈ bH, then aH = bH.

3. The size of each coset aH is the same as the size of H.

• A picture:

• Another View: define a relation RH on G by a ∼ b iff a−1b ∈ H (⇔ b ∈ aH ⇔ aH = bH).
This is an equivalence relation, whose equivalence classes are exactly the cosets of H. That
is, [a]RH

= aH.

– Example: On Z, a ≡ b (mod n) iff a − b ∈ nZ. The congruence classes modulo n are
exactly the cosets of nZ: [a]n = a+ nZ.
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