AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 10

October 8, 2018

Reading: Gallian Chapters 6 and 7

1 Isomorphisms

- Q: When are two groups the "same" up to the names of elements?
- Examples:
 - $-\mathbb{Z}_2$ and the group $G = \{x, y\}$ with the following Cayley table:

$$\begin{array}{c|cc} \circ & x & y \\ \hline x & y & x \\ y & x & y \end{array}$$

- Any infinite cyclic group and \mathbb{Z} .
- Any cyclic group of order n and \mathbb{Z}_n .
- *n*-dimensional real vector space and \mathbb{R}^n
- **Def:** For groups G and H, an *isomorphism* from G to H is a mapping $\varphi: G \to H$ such that
 - 1. φ is a bijection (i.e. one-to-one and onto).
 - 2. for every $a, b \in G$, $\varphi(ab) = \varphi(a)\varphi(b)$. (Note that ab is computed using the operation of G, and $\varphi(a)\varphi(b)$ using the operation of H.)

If there exists an isomorphism from G to H, we say that G and H are *isomorphic* and write $G \cong H$.

- Comments
 - Gallian writes $G \approx H$, but $G \cong H$ is more standard notation than $G \approx H$.
 - Isomorphism is an equivalence relation on groups.
- More Examples

 $-S_4 \cong D_8?$

$$-S_4 \cong \mathbb{Z}_{24}?$$

$$- (\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)?$$

- Thm: If A and B are the same size (i.e. there is a bijection $\pi : A \to B$), then $Sym(A) \cong Sym(B)$.
 - **Proof:** Consider the map $\varphi : Sym(A) \to Sym(B)$ given by $\sigma \mapsto \pi \circ \sigma \circ \pi^{-1}$ ("conjugation by π ")

- Example: $A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{a, b, c, d, e, f, g\}, \sigma = (15)(236)(47).$

- Important special case: A = B. Then for each permutation π of A, conjugation by π is isomorphism of Sym(A) with itself — an *automorphism* of Sym(A). In general, for any element π of a group G, $\sigma \mapsto \pi \circ \pi^{-1}$ is an automorphism of G.
- Isomorphisms preserve all "group-theoretic properties" properties that can be described in terms of the group operation and numbers of elements of the group (but not the specific names of those elements).
- Examples (from Thms 6.2, 6.3:) If $\varphi : G \to H$ is an isomorphism, then
 - 1. $\varphi(e) = e$.
 - 2. for all $g \in G$, $\varphi(g^{-1}) = \varphi(g)^{-1}$.
 - 3. $\operatorname{order}(\varphi(g)) = \operatorname{order}(g)$.
 - 4. if G is abelian, then H is abelian
 - 5. if G is cyclic, then H is cyclic
 - 6. if $G' \leq G$, then $\varphi(G') \stackrel{\text{def}}{=} \{\varphi(g) : g \in G'\} \leq H$.
 - ÷

2 Cayley's Theorem

- **Def:** We write $G \leq H$ if G is isomorphic to a subgroup of H. (Equivalently, there is a function $\varphi: G \to H$ satisfying all of the properties of an isomorphism except for being *onto*.)
- Example: $D_n \lesssim S_n$.

- Cayley's Theorem: For every group $G, G \leq Sym(G)$.
 - Every group is (isomorphic to) a permutation group!
 - The subgroups of S_n include all finite groups.
- Proof of Cayley's Thm:

- **Example:** $\mathbb{Z}_5 \lesssim Sym(\{0, 1, 2, 3, 4\}).$

3 Cosets

- **Def:** For a group $G, H \leq G$, and $a \in G$, the *left coset of* H *containing* a is the set $aH = \{ah : h \in H\}$. Similarly, the *right coset of* H *containing* a is $Ha = \{ha : h \in H\}$.
- Examples:
 - $-G = \mathbb{Z}, H = 3\mathbb{Z} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$. (Note: $3\mathbb{Z}$ is *not* the left coset of \mathbb{Z} containing 3. Why not?)

 $- G = S_3, H = \{\varepsilon, (23)\}.$

 $- \ G = \mathbb{R}^3, \ H = \{(x, y, z) : z = 0\}.$

Thm: If H ≤ G, then the cosets of H form a partition of G into disjoint subsets, each of size |H|.
Proof:

- 1. Every element $a \in G$ is contained in at least one coset:
- 2. Every element $a \in G$ is contained in only one coset, i.e. if $a \in bH$, then aH = bH.
- 3. The size of each coset aH is the same as the size of H.
- A picture:
- Another View: define a relation R_H on G by $a \sim b$ iff $a^{-1}b \in H$ ($\Leftrightarrow b \in aH \Leftrightarrow aH = bH$). This is an equivalence relation, whose equivalence classes are exactly the cosets of H. That is, $[a]_{R_H} = aH$.
 - Example: On \mathbb{Z} , $a \equiv b \pmod{n}$ iff $a b \in n\mathbb{Z}$. The congruence classes modulo n are exactly the cosets of $n\mathbb{Z}$: $[a]_n = a + n\mathbb{Z}$.