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Isomorphisms

e Q: When are two groups the “same” up to the names of elements?
e Examples:

— Zs and the group G = {x,y} with the following Cayley table:

o
x
Yy

SRS RS
ASEERS I NS

— Any infinite cyclic group and Z.

— Any cyclic group of order n and Z,.

— n-dimensional real vector space and R"

e Def: For groups G and H, an isomorphism from G to H is a mapping ¢ : G — H such that

1. ¢ is a bijection (i.e. one-to-one and onto).

2. for every a,b € G, p(ab) = ¢(a)p(b). (Note that ab is computed using the operation of

G, and ¢(a)p(b) using the operation of H.)

If there exists an isomorphism from G to H, we say that G and H are isomorphic and write

G=H.

e Comments

— Gallian writes G =~ H, but G = H is more standard notation than G ~ H.

— Isomorphism is an equivalence relation on groups.
e More Examples

— Sy = Dg?




— S4 = Zoys?

- (R, +) = (R+7 )?

e Thm: If A and B are the same size (i.e. there is a bijection 7 : A — B), then Sym(A) =
Sym(DB).

— Proof: Consider the map ¢ : Sym(A) — Sym(B) given by o + mogon~! (“conjugation
by 7T77)

— Example: A =1{1,2,3,4,5,6,7}, B={a,b,c,d,e, f,g}, o = (15)(236)(47).

— Important special case: A = B. Then for each permutation 7 of A, conjugation by 7 is
isomorphism of Sym(A) with itself — an automorphism of Sym(A). In general, for any

element 7 of a group G, o — 7o 7! is an automorphism of G.

e Isomorphisms preserve all “group-theoretic properties” — properties that can be described
in terms of the group operation and numbers of elements of the group (but not the specific
names of those elements).

e Examples (from Thms 6.2, 6.3:) If ¢ : G — H is an isomorphism, then

ple) =e.

for all g € G, (g7") = @(g)~
order(¢(g)) = order(g).

if G is abelian, then H is abelian

1

if G is cyclic, then H is cyclic
if G’ < @G, then p(G’) e {p(g) : g€ G'} <H.
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2 Cayley’s Theorem

e Def: We write G < H if G is isomorphic to a subgroup of H. (Equivalently, there is a
function ¢ : G — H satisfying all of the properties of an isomorphism except for being onto.)

e Example: D, < 5,.



e Cayley’s Theorem: For every group G, G < Sym(G).

— Every group is (isomorphic to) a permutation group!

— The subgroups of .5, include all finite groups.

e Proof of Cayley’s Thm:

— Example: Z5 < Sym({0,1,2,3,4}).

3 Cosets

e Def: For a group G, H < G, and a € G, the left coset of H containing a is the set aH =
{ah : h € H}. Similarly, the right coset of H containing a is Ha = {ha : h € H}.

e Examples:

- G=Z,H=32=4{...,-6,-3,0,3,6,...}. (Note: 3Z is not the left coset of Z contain-
ing 3. Why not?)

— G =83, H=1{e,(23)}.

- G=R3 H={(z,y,2): 2= 0}.

e Thm: If H < G, then the cosets of H form a partition of GG into disjoint subsets, each of size
| H].
Proof:



1. Every element a € GG is contained in at least one coset:

2. Every element a € G is contained in only one coset, i.e. if a € bH, then aH = bH.

3. The size of each coset aH is the same as the size of H.

e A picture:

e Another View: define a relation Ry on G by a ~biff a™lb € H (& b€ aH < aH = bH).
This is an equivalence relation, whose equivalence classes are exactly the cosets of H. That
is, [a]p, = aH.

— Example: On Z, a =b (mod n) iff a — b € nZ. The congruence classes modulo n are
exactly the cosets of nZ: [a], = a + nZ.



