Lecture Notes 6

1 More Examples of Groups

- Reading: Gallian Ch. 1,2
- $n \times n$ matrices, with real entries:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{n 1} & \cdots & & a_{n n}
\end{array}\right) .
$$

- Defines a linear transformation from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $A v=w$, where $w_{i}=\sum_{j} a_{i j} v_{j}=\left\langle r_{i}, v\right\rangle$ and r_{i} is i 'th row of A.
$-A+B$ has $(i, j)^{\prime}$ 'th entry $a_{i j}+b_{i j}$.
- $A B$ has $(i, j)^{\prime}$ 'th entry $\sum_{k} a_{i k} b_{k j}=\left\langle r_{i}, c_{j}\right\rangle$ if r_{i} is i 'th row of A and c_{j} is j 'th column of B.
- Symmetric Group Sym (S)
- Terminology
* Injection $=$ one-to-one function
* Surjection $=$ onto function
* Bijection = one-to-one and onto function
* Permutation $=$ bijection from a set to itself
$-\operatorname{Sym}(S)$ is the set of all permutations $\pi: S \rightarrow S$ under composition. $\pi \circ \tau$ is the permutation defined by $(\pi \circ \tau)(x)=\pi(\tau(x))$.
$-S_{n}=\operatorname{Sym}(\{1, \ldots, n\})$.
- Example: S_{3}
$-\mathbf{Q}:\left|S_{n}\right|=$?
- Dihedral Group D_{n}

Notation	Set	Operation	Closure?	Associative?	Identity?	Inverses?	Group?	Commutative?
$M_{n}(\mathbb{R})$	$n \times n$ real matrices	+ entrywise						
	$n \times n$ real matrices	matrix mult.						
$G L_{n}(\mathbb{R})$	$n \times n$ invertible real matrices	matrix mult.						
S_{n}	permutations $[n] \mapsto[n]$	composition						
$S y m(S)$	permutations $S \mapsto S$	composition						
D_{n}	symmetries of regular n-gon	composition						

- "Symmetries" of regular n-gon, $n \geq 3$.
$-D_{n}$ is the set of distance-preserving transformations T of the plane such that $T(n$-gon $)=$ n-gon.
- Elements of D_{n}
* If we label vertices $0,1, \ldots, n-1$ (representing points in \mathbb{R}^{2}) clockwise, then each element $T \in D_{n}$ is determined by $T(0)$ and $T(1)$.
$* \operatorname{Rot}_{k}(i)=k+i \bmod n:$ Clockwise rotation by $(k / n) 360^{\circ}$.
* $\operatorname{Ref}_{k}(i)=k-i \bmod n:$ Reflection through line at $(k / n) 180^{\circ}$ clockwise from line through vertex 0 .
- Generalizes to define symmetries of other geometric objects, eg of tilings, of molecules, and of crystals (cf. Gallian Chs 27-28).

2 Basic Properties of Groups

- Reading: Gallian Ch. 2
- Thm 2.1 (Identity is Unique): In every group G, there is only one identity element. Proof:
- Thm 2.3 (Inverses are Unique): For every group G and every element $a \in G$, there is only one inverse of a in G (typically denoted a^{-1}).
Proof: similar to uniqueness of the identity.
- Multiplicative Notation for Groups
- Group operation: $a \cdot b$ or just $a b$
- Identity: 1 or e
- Inverse of $a: a^{-1}$
$-a$ multiplied n times: a^{n}
- Additive Notation for Groups
- Group operation: $a+b$
- Identity: 0
- Inverse of $a:-a$
- a added n times: na
- Only used for abelian groups!
- Thm 2.2 (Left-cancellation and Right-cancellation): In a group:

1. $a b=a c \Rightarrow b=c$.
2. $b a=c a \Rightarrow b=c$.

- Thm 2.4 (Shoes-Socks Property): In a group, $(a b)^{-1}=b^{-1} a^{-1}$. Proof: omitted

3 Order

- Reading: Gallian, Chapter 3.
- Def: The order of a group G, denoted $|G|$, is the number of elements in G (possibly ∞).
- Def: For a group G and $g \in G$, the order of g, denoted $|g|$, is the smallest positive integer n such that $g^{n}=e$ (or ∞ if no such n exists).
Example: Orders in S_{3}

Example: Orders in \mathbb{Q}^{*}

