AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 6

September 20, 2018

1 More Examples of Groups

- Reading: Gallian Ch. 1,2
- $n \times n$ matrices, with real entries:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \cdots & & a_{nn} \end{pmatrix}.$$

- Defines a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$ by Av = w, where $w_i = \sum_j a_{ij}v_j = \langle r_i, v \rangle$ and r_i is *i*'th row of A.
- -A + B has (i, j)'th entry $a_{ij} + b_{ij}$.
- AB has (i, j)'th entry $\sum_k a_{ik}b_{kj} = \langle r_i, c_j \rangle$ if r_i is *i*'th row of A and c_j is *j*'th column of B.
- Symmetric Group Sym(S)
 - Terminology
 - * Injection = one-to-one function
 - * Surjection = onto function
 - * Bijection = one-to-one and onto function
 - * Permutation = bijection from a set to itself
 - Sym(S) is the set of all permutations $\pi : S \to S$ under composition. $\pi \circ \tau$ is the permutation defined by $(\pi \circ \tau)(x) = \pi(\tau(x))$.
 - $S_n = Sym(\{1,\ldots,n\}).$
 - Example: S_3

-**Q**: $|S_n| = ?$

• Dihedral Group D_n

Notation Set	Set	Operation	Closure?	Associative?	Identity?	Inverses?	Group?	Deration Closure? Associative? Identity? Inverses? Group? Commutative?
$M_n(\mathbb{R})$	$n \times n$ real matrices	+ entrywise						
	$n \times n$ real matrices	matrix mult.						
$GL_n(\mathbb{R})$	$n \times n$ invertible real m	atrices matrix mult.						
S_n	permutations $[n] \mapsto [n]$	composition						
Sym(S)	permutations $S \mapsto S$	composition						
D_n	symmetries of regular n -gon	n-gon composition						

- "Symmetries" of regular *n*-gon, $n \ge 3$.
- D_n is the set of distance-preserving transformations T of the plane such that T(n-gon) = n-gon.
- Elements of D_n
 - * If we label vertices 0, 1, ..., n 1 (representing points in \mathbb{R}^2) clockwise, then each element $T \in D_n$ is determined by T(0) and T(1).
 - * $\operatorname{Rot}_k(i) = k + i \mod n$: Clockwise rotation by $(k/n)360^\circ$.
 - * $\operatorname{Ref}_k(i) = k i \mod n$: Reflection through line at $(k/n)180^\circ$ clockwise from line through vertex 0.
- Generalizes to define symmetries of other geometric objects, eg of tilings, of molecules, and of crystals (cf. Gallian Chs 27–28).

2 Basic Properties of Groups

- Reading: Gallian Ch. 2
- Thm 2.1 (Identity is Unique): In every group G, there is only one identity element. Proof:
- Thm 2.3 (Inverses are Unique): For every group G and every element $a \in G$, there is only one inverse of a in G (typically denoted a^{-1}). **Proof:** similar to uniqueness of the identity.
- Multiplicative Notation for Groups
 - Group operation: $a \cdot b$ or just ab
 - Identity: 1 or e
 - Inverse of $a: a^{-1}$
 - -a multiplied n times: a^n
- Additive Notation for Groups
 - Group operation: a + b
 - Identity: 0
 - Inverse of a: -a
 - -a added n times: na
 - Only used for abelian groups!
- Thm 2.2 (Left-cancellation and Right-cancellation): In a group:
 - 1. $ab = ac \Rightarrow b = c$.
 - 2. $ba = ca \Rightarrow b = c$.
- Thm 2.4 (Shoes-Socks Property): In a group, $(ab)^{-1} = b^{-1}a^{-1}$. Proof: omitted

3 Order

- Reading: Gallian, Chapter 3.
- **Def:** The order of a group G, denoted |G|, is the number of elements in G (possibly ∞).
- Def: For a group G and g ∈ G, the order of g, denoted |g|, is the smallest positive integer n such that gⁿ = e (or ∞ if no such n exists).
 Example: Orders in S₃

Example: Orders in \mathbb{Q}^*