AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 13

October 18, 2018

• Reading: Gallian Chapter 9

1 Normal Subgroups

- Motivation:
 - Recall that the cosets of $n\mathbb{Z}$ in \mathbb{Z} $(a+n\mathbb{Z})$ are the same as the congruence classes modulo n $([a]_n)$
 - These form a group under addition, isomorphic to \mathbb{Z}_n : $[a+b]_n = [a+b \mod n]_n$ depends only on $[a]_n$ and $[b]_n$ (and not on the particular choice of coset representatives a and b), so we can define $[a]_n + [b]_n = [a+b]_n$.
 - **Q**: under what conditions on $H \leq G$ do the left-cosets of H form a group under the operation of G?
- **Def:** A subgroup H of G is *normal* iff for every $a \in G$, aH = Ha. If this holds, we write $H \triangleleft G$.
- **Proposition:** For $H \leq G$, the following are equivalent:
 - $H \lhd G$
 - for every $a \in G$, $aHa^{-1} = H$
 - for every $a \in G$, $h \in H$, $aha^{-1} \in H$. That is, if $h \in H$, then all *conjugates* of h are also in H.
- Examples:
 - Which subgroups of an abelian group are normal?
 - Which subgroups of S_4 are normal?

 $-A_n \lhd S_n$

2 Factor Groups

- Thm 9.2: If $H \triangleleft G$, then the operation (aH)(bH) = abH on the left-cosets of H is well-defined (does not depend on the choice of coset representatives a, b) and forms a group, denoted G/H (called a *factor group*, the *quotient* of G by H, or " $G \mod H$ ").
- Proof:

• Examples:

 $-\mathbb{Z}/n\mathbb{Z}$

 $-S_n/A_n$

- $(\mathbb{Z}_3 \times \mathbb{Z}_5)/(\mathbb{Z}_3 \times \{0\})$
- $-S_4/H$ where H is the normal subgroup of size 4.
- $-\mathbb{Z}_n/\langle a \rangle$
- $-\mathbb{R}/\mathbb{Z}$