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1 Factorization of Polynomials

• Reading: Gallian Ch. 16

• Def: Let R be a commutative ring with unity. An element a ∈ R is irreducible if a is not a
zero or a unit, and if a = bc then either b or c is a unit.

• Examples:

– Units in Z:

– Irreducible elements of Z:

– Units in F [x] for a field F :

– Irreducible polynomials in F [x] of degree 1:

– Irreducible polynomials in F [x] of degree 2:

– Irreducible polynomials in F [x] of degree 3:

– Irreducible polynomials in F [x] of degree 4+:

– No simple characterization in general for high degree polynomials. (The conditions in
Gallian are necessary or sufficient, but not both.) But there are efficient algorithms for
testing irreducibility (see discussion of factorization below).

• Euclid’s Lemma for Polynomials: If p(x) is irreducible and p(x)|(f(x)g(x)), then p(x)|f(x)
or p(x)|g(x).

• Proof: Similar to proof for integers. If p(x) does not divide f(x), then gcd(p(x), f(x)) = 1 be-
cause the only factors of p(x) are 1 and p(x) (up to multiplication by units). So 1 = s(x)p(x)+
t(x)f(x) for some polynomials s(x) and t(x). Then g(x) = s(x)p(x)g(x) + t(x)f(x)g(x) is
divisible by p(x) because both terms on the right-hand side are divisible by p(x).

• Thm (Unique Factorization of Polynomials): Every f(x) ∈ F [x] that is neither zero
nor a unit can be written as a product of irreducible polynomials f(x) = g1(x)g2(x) · · · gk(x),
and this factorization is unique up to the order of the gi’s and multiplying them by units
(elements of F ).

– Compare with unique factorization over Z, unique up to multiplication by ±1.

Proof: Similar to integers. Existence of factorization by induction on the degree. Uniqueness
by Euclid’s Lemma.
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• Unlike Z, there are efficient algorithms known for factoring polynomials over fields. The
best known deterministic algorithms use poly(n, p, log q) operations over F , where p is the
characteristic of F and q ≥ p is the size of F . The best known randomized algorithms use
poly(n, log q) operations. (Problem 4 on PS8 demonstrates some of the beautiful ideas behind
these algorithms.)

2 Ideals in Polynomial Rings

• Reading: Gallian Ch. 16

• Q: Let F be a field, p(x), q(x) ∈ F [x]. Can we find a single polynomial r(x) such that
〈r(x)〉 = 〈p(x), q(x)〉?

• Def: An ideal I in a ring R is principal if there is a single element a ∈ R that generates I
(i.e. I = 〈a〉). R is a principal ideal domain if every ideal in R is principal.

– Examples and Non-examples:

• Thms 16.3–16.4: For F a field, F [x] is a principal ideal domain. Moreover, for every nonzero
ideal I ⊆ F [x], if g(x) is a nonzero polynomial of minimal degree in I, then I = 〈g(x)〉.

• Proof: Omitted (in book).

3 Factors of Polynomial Rings

• Reading: Gallian Ch. 17.

• Now our goal is to understand the factor rings F [x]/〈p(x)〉. We’ll write f(x) mod p(x) to
denote the remainder when f(x) is divided by p(x).

• Thm (characterizing F [x]/〈p(x)〉): Let F be a field and let p(x) ∈ F [x] be a nonzero
polynomial. Then:

– f(x) + 〈p(x)〉 = g(x) + 〈p(x)〉 if and only if f(x) mod p(x) = g(x) mod p(x).

– F [x]/〈p(x)〉 is isomorphic to the ring consisting of all polynomials of degree smaller than
deg(p) with arithmetic modulo p(x).

cf. Z/〈n〉 ∼= Zn.

• Proof:
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• Examples:

– Zp[x]/〈x2 − k〉.

– Q[x]/〈x5 − x3 − 1〉.

• Remark: above thm holds more generally for R[x] if leading coefficient of p is a unit in R
(otherwise division/modding by p is not possible).

• Q: When is F [x]/〈p(x)〉 a field?

• Thm 17.5: For a field F and a nonzero polynomial p(x) ∈ F [x], the factor ring F [x]/〈p(x)〉
is a field if and only if p(x) is irreducible.

Proof:

• This is a way of building larger fields from smaller fields!

• Examples:

– R[x]/〈x2 + 1〉.
– Zp[x]/〈x2 − k〉.
– Z2[x]/〈x3 + x2 + 1〉.

• Terminology for Extension Fields (see Gallian Chs. 20–22 to learn more)

– If E is a field containing F as a subfield, then we call E an extension field of F .

– When p(x) is irreducible, E = F [x]/〈p(x)〉 is the extension field of F obtained by ad-
joining a root of p to F . It is the “smallest field” containing F as a subfield and in which
p(x) has a root.

– Fact: For every prime p and positive integer n, there is an irreducible polynomial over
Zp of degree n. Consequently, there is a finite field of size pn. This field is unique up to
isomorphism and is denoted Fpn or GF(pn).

– Elements of an extension field E that are roots of polynomials over F are called algebraic.
Elements that are not roots of any polynomial over F are called transcendental; for
example, the real numbers π and e are transcendental over Q.

• Q: How to compute inverses in F [x]/〈p(x)〉?
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4 Analogy between Z and F [x]

• We have seen that Z and F [x] share many properties. For example, both are:

– Euclidean Domains: There exists division with remainder, and hence also gcds.

– Principal Ideal Domains: Every ideal is principal.

– Unique Factorization Domains: Every non-unit factors uniquely into irreducible ele-
ments (up to order and multiplication by units).

• In general every Euclidean domain is a Principal Ideal Domain, and every Principal Ideal
Domain is a Unique Factorization Domain.

• However, the converse does not hold. For R[x] to be a Unique Factorization Domain turns out
to only require that R is a Unique Factorization Domain. For example Z[x] and F [x1, . . . , xn]
are Unique Factorization Domains but not Principal Ideal Domains.

• The lack of being a Euclidean Domain or PID makes computations in F [x1, . . . , xn] and its
ideals and quotients more difficult. A Grobner Basis is a special kind of generating set for an
ideal in F [x1, . . . , xn] that enables for a weaker form of division with remainder. These are
very important in practice for solving systems of simultaneous polynomial equations (which
has applications, e.g. in robot motion).

• A full treatment of these issues can be found in Gallian Ch. 18 (which we will not cover).
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