1 Polynomial Rings

- **Reading:** Gallian Ch. 16

- **Def:** Let R be a commutative ring with unity. The *ring of polynomials over* R is the ring $R[x]$ consisting of all expressions of the form $a_0 + a_1 x + a_2 x^2 + \cdots$, where each $a_i \in R$ and all but finitely many a_i’s are zero. (We usually omit the zero terms, so $1 + 5x + 10x^2 + 3x^3$ is shorthand for $1 + 5x + 10x^2 + 3x^3 + 0x^4 + 0x^5 + \cdots$.)

For two polynomials $p(x) = \sum_i a_i x^i$ and $q(x) = \sum_i b_i x^i$, their *sum* $(p + q)(x)$ is defined to be the polynomial $\sum_i (a_i + b_i) x^i$ and their *product* $(pq)(x)$ is the polynomial $\sum_i (\sum_{j=0}^i (a_j b_{i-j})) x^i$, where $a_i + b_i$ and $a_j b_{j-i}$ are defined using the operations of R.

- **Def:** The *degree* $\deg(p)$ of a nonzero polynomial $p(x) = \sum_i a_i x^i$ is the largest d such that $a_d \neq 0$. a_d is called the *leading coefficient* of p. p is called *monic* if $a_d = 1$.

- **Examples:** $p(x) = 3x^3 + 4x + 1$ and $q(x) = 5x + 6$ in $\mathbb{Z}_7[x]$.

- **Remarks:**
 - $R[x]$ is a commutative ring with unity.
 - Two different polynomials can define the same function on R, but we still treat them as different elements of $R[x]$. For example $p(x) = x \cdot (x - 1) \cdots (x - p + 1)$ defines the zero function on \mathbb{Z}_p, but is not the zero polynomial (why?).
 - For polynomials of degree at most n, their sum can be computed using n operations over R and their product using $O(n^2)$ operations over R. (Best known multiplication algorithm uses $O(n \log n)$ operations.) Note similarity with sum and product of integers!

- **Thm 16.1:** R an integral domain $\Rightarrow R[x]$ an integral domain.

Proof:

1
• We will focus on the case that the coefficient ring R is a field F. In this case, we will see that the ring $F[x]$ has many similar properties to the ring \mathbb{Z}. In fact, things tend to be easier to prove and to compute over $F[x]$ than over \mathbb{Z}.

• **Division with Remainder (Thm 16.2):** $f(x), g(x) \in F[x], g(x)$ nonzero, then there exist (unique) polynomials $q(x)$ and $r(x)$ with $\deg(r) < \deg(g)$ and $f(x) = q(x)g(x) + r(x)$. Moreover, if f and g have degree at most n, then $q(x)$ and $r(x)$ can be computed using $O(n^2)$ operations from F. We sometimes write $f(x) \mod g(x)$ for the remainder $r(x)$.

Proof and algorithm (long division of polynomials):

Inputs are $f(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0$, $g(x) = b_m x^m + b_{m-1}x^{m-1} + \cdots + b_1 x + b_0$. We’ll compute $q(x) = c_{n-m}x^{n-m} + \cdots + c_1 x + c_0$.

1. Let $f_0(x) = f(x)$.
2. For $i = 0$ to $n - m$:

 (a) Let a be the coefficient of x^{n-i} in $f_i(x)$, and let $c_{n-m-i} = b_m^{-1}a$.

 (b) Let $f_{i+1}(x) = f_i(x) - c_{n-m-i}x^{n-m-i} \cdot g(x)$. (This zeroes out the term of degree $n - i$.)
3. Output $q(x) = c_{n-m}x^{n-m} + \cdots + c_1 x + c_0$.

• **Example:** $f(x) = 3x^3 + 4x + 1$ divided by $g(x) = 5x + 6$ in $\mathbb{Z}_7[x]$.

• **Note:** all we used about F being a field is that b_m has an inverse. Over general rings R, division is possible if the leading coefficient of $g(x)$ is a unit (e.g. if g is monic).

• **Corollary:** Let R be a commutative ring with unity, $f(x) \in R[x]$, and $a \in R$. Then $f(a) = 0$ if and only if $(x - a)$ divides $f(x)$ in $R[x]$.

Proof:

• **Corollary:** A polynomial of degree n over an integral domain R has at most n zeroes.

 – This simple fact is extremely useful! Ought to be called the “fundamental thm of algebra” (which is unfortunately used for the fact that every polynomial has a root in \mathbb{C}).

 – Another example of “If an algebraic identity fails, then it fails often.”

Proof: