Salil Vadhan

Lecture Notes 20
November 20, 2018

1 Polynomial Rings

- Reading: Gallian Ch. 16
- Def: Let R be a commutative ring with unity. The ring of polynomials over R is the ring $R[x]$ consisting of all expressions of the form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, where each $a_{i} \in R$ and all but finitely many a_{i} 's are zero. (We usually omit the zero terms, so $1+5 x+10 x^{2}+3 x^{3}$ is shorthand for $1+5 x+10 x^{2}+3 x^{3}+0 x^{4}+0 x^{5}+\cdots$.)
For two polynomials $p(x)=\sum_{i} a_{i} x^{i}$ and $q(x)=\sum_{i} b_{i} x^{i}$, their $\operatorname{sum}(p+q)(x)$ is defined to be the polynomial $\sum_{i}\left(a_{i}+b_{i}\right) x^{i}$ and their $\operatorname{product}(p q)(x)$ is the polynomial $\sum_{i}\left(\sum_{j=0}^{i}\left(a_{j} b_{j-i}\right)\right) x^{i}$, where $a_{i}+b_{i}$ and $a_{j} b_{j-i}$ are defined using the operations of R.
- Def: The degree $\operatorname{deg}(p)$ of a nonzero polynomial $p(x)=\sum_{i} a_{i} x^{i}$ is the largest d such that $a_{d} \neq 0 . a_{d}$ is called the leading coefficient of $p . p$ is called monic if $a_{d}=1$.
- Examples: $p(x)=3 x^{3}+4 x+1$ and $q(x)=5 x+6$ in $\mathbb{Z}_{7}[x]$.

- Remarks:

$-R[x]$ is a commutative ring with unity.

- Two different polynomials can define the same function on R, but we still treat them as different elements of $R[x]$. For example $p(x)=x \cdot(x-1) \cdots(x-p+1)$ defines the zero function on \mathbb{Z}_{p}, but is not the zero polynomial (why?).
- For polynomials of degree at most n, their sum can be computed using n operations over R and their product using $O\left(n^{2}\right)$ operations over R. (Best known multiplication algorithm uses $O(n \log n)$ operations.) Note similarity with sum and product of integers!
- Thm 16.1: R an integral domain $\Rightarrow R[x]$ an integral domain. Proof:
- We will focus on the case that the coefficient ring R is a field F. In this case, we will see that the ring $F[x]$ has many similar properties to the ring \mathbb{Z}. In fact, things tend to be easier to prove and to compute over $F[x]$ than over \mathbb{Z}.
- Division with Remainder (Thm 16.2): $f(x), g(x) \in F[x], g(x)$ nonzero, then there exist (unique) polynomials $q(x)$ and $r(x)$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ and $f(x)=q(x) g(x)+r(x)$. Moreover, if f and g have degree at most n, then $q(x)$ and $r(x)$ can be computed using $O\left(n^{2}\right)$ operations from F. We sometimes write $f(x) \bmod g(x)$ for the remainder $r(x)$.

Proof and algorithm (long division of polynomials): Inputs are $f(x)=a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}$. We'll compute $q(x)=c_{n-m} x^{n-m}+\cdots+c_{1} x+c_{0}$.

1. Let $f_{0}(x)=f(x)$.
2. For $i=0$ to $n-m$:
(a) Let a be the coefficient of x^{n-i} in $f_{i}(x)$, and let $c_{n-m-i}=b_{m}^{-1} a$.
(b) Let $f_{i+1}(x)=f_{i}(x)-c_{n-m-i} x^{n-m-i} \cdot g(x)$. (This zeroes out the term of degree $n-i$.)
3. Output $q(x)=c_{n-m} x^{n-m}+\cdots+c_{1} x+c_{0}$.

- Example: $f(x)=3 x^{3}+4 x+1$ divided by $g(x)=5 x+6$ in $\mathbb{Z}_{7}[x]$.
- Note: all we used about F being a field is that b_{m} has an inverse. Over general rings R, division is possible if the leading coefficient of $g(x)$ is a unit (e.g. if g is monic).
- Corollary: Let R be a commutative ring with unity, $f(x) \in R[x]$, and $a \in R$. Then $f(a)=0$ if and only if $(x-a)$ divides $f(x)$ in $R[x]$.
Proof:
- Corollary: A polynomial of degree n over an integral domain R has at most n zeroes.
- This simple fact is extremely useful! Ought to be called the "fundamental thm of algebra" (which is unfortunately used for the fact that every polynomial has a root in \mathbb{C}).
- Another example of "If an algebraic identity fails, then it fails often."

Proof:

- Def: For $f(x), g(x) \in F[x]$, not both zero, the greatest common divisor of $f(x)$ and $g(x)$ is the monic polynomial $h(x)$ of largest degree such that $h(x)$ divides both $f(x)$ and $g(x)$.
- Euclidean Algorithm for Polynomials: Given two polynomials $f(x)$ and $g(x)$ of degree at most n, not both zero, their greatest common divisor $h(x)$, can be computed using at most $n+1$ divisions of polynomials of degree at most n. Moreover, using $O(n)$ operations on polynomials of degree at most n, we can also find polynomials $s(x)$ and $t(x)$ such that $h(x)=s(x) f(x)+t(x) g(x)$.

Proof: analogous to integers, using repeated division.
$\underline{\operatorname{Euclid}(f, g)}$:

1. Assume WLOG $\operatorname{deg}(f) \geq \operatorname{deg}(g)>0$.
2. Set $i=1, f_{1}=f, f_{2}=g$.
3. Repeat until $f_{i+1}=0$:
(a) Compute $f_{i+2}=f_{i} \bmod f_{i+1}$ (i.e. f_{i+2} is the remainder when f_{i} is divided by f_{i+1}). (b) Increment i.
4. Output f_{i} divided by its leading coefficient (to make it monic).

Here the complexity analysis is simpler than for integers: note that the degree of f_{i+2} is strictly smaller than that of f_{i}, so f_{n+2} is of degree zero, and $f_{n+3}=0$. Thus we do at most n divisions.
The Extended Euclidean Algorithm (finding the polynomials $s(x)$ and $t(x)$) is obtained analogously to the case of the integers.

