1 General Properties of Rings, Integral Domains, and Fields

- **General Properties of Rings (Thm 12.1):** In a ring R,
 1. For every $r \in R$, $0 \cdot r = 0$.
 2. For every $a, b \in R$, $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.

Proof:

- **Def:** A *zero-divisor* in a ring R is a nonzero element $a \in R$ such that $ab = 0$ for some nonzero element $b \in R$.

- **Def:** An *integral domain* is a commutative ring with unity that has no zero-divisors.

- **Prop:** Let R be a commutative ring with unity. Then the following are equivalent:
 1. R is an integral domain, and
 2. R satisfies cancellation: if $a, b, c \in R$ satisfy $ab = ac$ and $a \neq 0$, then $b = c$.

Proof (1⇒2):

- **Def:** A *unit* in a ring R with unity is an element with a multiplicative inverse.
 - Not to be confused with *unity*, which is the multiplicative identity, 1.
 - R^* is the set of units in R, which can be shown to be a group under multiplication, known as the *group of units in R*.
 - **Example:** $\mathbb{Z}^* = $

- **Def:** A *field* F is a commutative ring R with unity such that $F^* = F - \{0\}$.

• **Prop:** Every field is an integral domain.
 Proof:

• **Thm:** Every finite integral domain is a field.
 Proof:

• **Def:** For a commutative ring R with unity, the *characteristic* of R is defined as follows. If 1 has finite additive order n, then the characteristic of R is defined to be n. If 1 has infinite order, then the characteristic of R is defined to be zero.

• **Thm 13.4:** The characteristic of any integral domain is either 0 or prime.
 Proof: