AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 17

November 1, 2018

• Reading: Gallian Chs. 12 & 13

1 General Properties of Rings, Integral Domains, and Fields

- General Properties of Rings (Thm 12.1): In a ring R,
 - 1. For every $r \in R$, $0 \cdot r = 0$.
 - 2. For every $a, b \in R$, $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.

Proof:

- **Def:** A zero-divisor in a ring R is a nonzero element $a \in R$ such that ab = 0 for some nonzero element $b \in R$.
- Def: An *integral domain* is a commutative ring with unity that has no zero-divisors.
- **Prop:** Let R be a commutative ring with unity. Then the following are equivalent:
 - 1. R is an integral domain, and
 - 2. R satisfies cancellation: if $a, b, c \in R$ satisfy ab = ac and $a \neq 0$, then b = c.

Proof $(1\Rightarrow 2)$:

- **Def:** A *unit* in a ring *R* with unity is an element with a multiplicative inverse.
 - Not to be confused with *unity*, which is the multiplicative identity, 1.
 - $-R^*$ is the set of units in R, which can be shown to be a group under multiplication, known as the group of units in R.
 - Example: $\mathbb{Z}^* =$
- **Def:** A field F is a commutative ring R with unity such that $F^* = F \{0\}$.

• **Prop:** Every field is an integral domain. **Proof:**

• Thm: Every finite integral domain is a field. Proof:

- **Def:** For a commutative ring R with unity, the *characteristic* of R is defined as follows. If 1 has finite additive order n, then the characteristic of R is defined to be n. If 1 has infinite order, then the characteristic of R is defined to be zero.
- Thm 13.4: The characteristic of any integral domain is either 0 or prime. Proof: