AM 106: Applied Algebra

Salil Vadhan

Lecture Notes 7

September 25, 2017

1 Subgroups

- Gallian Chapter 3.
- **Def:** A subset H of G is called a *subgroup* of G (denoted $H \leq G$) iff H is a group under the operation of G.
- **Example:** $\{0\} \leq \{\text{even integers}\} \leq \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} \text{ under addition.}$
- Thms 3.1–3.3 (Subgroup Tests): For a subset *H* of a group *G*, the following are equivalent (TFAE):
 - 1. $H \leq G$.
 - 2. *H* is nonempty, and for all $a, b \in H$, we have $ab \in H$ and $a^{-1} \in H$.
 - 3. *H* is nonempty, and for all $a, b \in H$, we have $ab^{-1} \in H$.

In case H is finite, the following condition is also equivalent to the above:

4. *H* nonempty and for all $a, b \in H$, we have $ab \in H$.

Proof:

 $2{\Rightarrow}1:$

$4{\Rightarrow}2$:

Other implications: in book

• **Example:** Subgroup lattice of \mathbb{Z}_{12}

• Example: Subgroup lattice of S₃

- **Example:** Subgroup lattice of \mathbb{Z}_{12}^*
- **Def:** For a group G and $g \in G$, the (cyclic) subgroup generated by g is $\langle g \rangle = \{g^n : n \in \mathbb{Z}\} = \{\dots, g^{-2}, g^{-1}, g^0 = e, g^1 = g, g^2, \dots\}.$

• Examples:

- $-\langle 3/2\rangle$ in \mathbb{R}^* .
- Cyclic subgroups of $\mathbb{Z}_1 2$, S_3 , \mathbb{Z}_{12}^*

2 Cyclic Groups

- Reading: Gallian Chapter 4.
- **Def:** A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. Such an element g is called a generator of G.

• Examples:

- 1. \mathbb{Z} ?
- 2. \mathbb{Z}_n ?
- 3. S_3 ?
- 4. \mathbb{Z}_{12}^* ?
- 5. \mathbb{Z}_{13}^* ?
- Fact: for every prime p, Z^{*}_p is cyclic. More generally, Z^{*}_n is cyclic if and only if n = 4 or n is of the form p^k or 2p^k for an odd prime p and k ∈ N.

(We will not prove this fact but you may use it throughout the course.)

- Thm 4.1 (Classification of cyclic groups): Let $G = \langle g \rangle$ be a cyclic group.
 - 1. If g has infinite order, then G is "like \mathbb{Z} in the exponent": ..., $g^{-2}, g^{-1}, g^0 = e, g^1, g^2, ...$ are all distinct and $g^i \cdot g^j = g^{i+j}$.
 - 2. If g has finite order n, then G is "like \mathbb{Z}_n in the exponent":

- $g^0, g^1, \ldots, g^{n-1}$ are all of the distinct elements of G. - For an arbitrary integer $k, g^k = g^{k \mod n}$, and thus $g^i \cdot g^j = g^{(i+j) \mod n}$.
- Example: Arithmetic in \mathbb{Z}_{13}^* and subgroup lattice of \mathbb{Z}_{13}^*
- Proof of Thm 4.1, Item 2:
- Corollary: $|\langle g \rangle| = |g|$.