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1 Vector Spaces

• Reading: Gallian Ch. 19

• Today’s main message: linear algebra (as in Math 21) can be done over any field, and most
of the results you’re familiar with from the case of R or C carry over.

• Def: A vector space over a field F is a set V with two operations + : V × V → V (vector
addition) and · : F × V → V (scalar multiplications) that satisfy the following properties:

1. V is an abelian group under +.

2. (ab) · v = a · (b · v) for all a, b ∈ F and v ∈ V .

3. 1 · v = v for all v ∈ V .

4. a · (v + w) = a · v + a · w for all a ∈ F and v, w ∈ V .

5. (a + b) · v = a · v + b · v for all a, b ∈ F and v ∈ V .

• A vector space has more structure than an abelian group, but less structure than a ring (only
multiplication by scalars, not multiplication of arbitrary pairs of elements of V ).

• Examples and Nonexamples:

– V = Fn

– V = C, F = R

– V = Zn, F = Z2

– V = F [x]

– V = F [x]/〈p(x)〉

– V = R for a ring R containing F .
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• Def: Let V be a vector space over of F . Vectors v1, . . . , vn ∈ V are linearly independent
iff for every c1, . . . , cn ∈ F , if c1v1 + · · · + cnvn = 0, then c1 = · · · = cn = 0. The vectors
v1, . . . , vn form a basis for V iff they are linearly independent and Span(v1, . . . , vn) = V , where
Span(v1, . . . , vn) = {c1v1 + · · ·+ cnvn : c1, . . . , cn ∈ F}.

• Examples of bases:

– (1, 0, 0, · · · , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1) is a basis for Fn for every field F .

– Q: Is (1, 1, 0), (1, 0, 1), (0, 1, 1) always a basis for F 3?

– Bases for other examples above?

• Def: The dimension of a vector space V over F is the size of the largest set of linearly
independent vectors in V . (different than Gallian, but we’ll show it to be equivalent)

– A measure of “size” that makes sense even for infinite sets.

• Prop: In a finite-dimensional vector space, every linearly independent set of dim(V ) vectors
is a basis. (Later we’ll see that all bases have exactly dim(V ) vectors).

Proof: Let v1, . . . , vk be any set of k = dim(V ) linearly independent vectors in V . To
show that this is a basis, we need to show that it spans V . Let w be any vector in V . Since
v1, . . . , vk, w has more than dim(V ) vectors, this set must be linearly dependent, i.e. there
exists constants c1, . . . , ck, d ∈ F , not all zero, such that c1v1 + · · · + ckvk + dw = 0. The
linear independence of v1, . . . , vk implies that d 6= 0. Thus, we can write w = (c1/d1)v1 +
· · ·+ (ck/dk)vk. So every vector in V is in the span of v1, . . . , vk.

• Q: What are the dimensions of the above examples?

2 Maps Between Vector Spaces

• Def (vector-space homomorphisms): Let V and W be two vector spaces over F . A
function f : V →W is a linear map iff for every x, y ∈ V and c ∈ F , we have

1. f(x + y) = f(x) + f(y) (i.e. f is a group homomorphism), and

2. f(cx) = cf(x).

f is an isomorphism if f is also a bijection. If there is an isomorphism between V and W , we
say that they are isomorphic and write V ∼= W .

• Prop: Every n-dimensional vector space V over F is isomorphic to Fn.

Proof: Let v1, . . . , vn be a basis for V .
Then an isomorphism from Fn to V is given by:

• Corollaries:
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– If V is an n-dimensional vector space over a finite field F , then |V | = |F |n.

– If E is a finite field and F is a subfield of E, then |E| = |F |n for some n ∈ N. (Q: How
does this compare to applying Lagrange’s Theorem to E as an additive subgroup of F?)

– if E is a finite field of characteristic p, then |E| = pn for some n ∈ N. (Shown on PS7
using Classification of Abelian Groups.)

• Matrices: A linear map f : Fn → Fm can be described uniquely by an m × n matrix M
with entries from F .

– Mij = f(ej)i, where ej = (000 · · · 010 · · · 00) has a 1 in the j’th position.

– For v = (v1, . . . , vn) ∈ Fn, f(v)i = f(
∑

j vjej)i =
∑

j vjf(ej)i =
∑

iMijvj = (Mv)i,
where Mv is matrix-vector product.

– Matrix multiplication ↔ composition of linear maps.

– If n = m, then f is an isomorphism ⇔ det(M) 6= 0.

– Solving Mv = w for v (when given M and w ∈ Fm) is equivalent to solving a linear
system with m variables and n unknowns.

• Example: f : Z3
3 → Z2

3 given by f(v1, v2, v3) = (v1 + 2v2, 2v1 + v3).

• Thm: If f : V →W is a linear map, then dim(ker(f)) + dim(im(f)) = dim(V ).

Proof: omitted.

• When F finite, this says |V | = |F |dim(V ) = |F |dim(ker(f)) · |F |dim(im(f)) = | ker(f)| · |im(f)|, just
like for group homomorphisms!

• Corollaries:

– Fn � Fm if m 6= n.

– All bases of a vector space have the same size.

– A homogenous linear system Mv = 0 for a given m× n matrix M always has a nonzero
solution v if n > m (more variables than unknowns).

• Computational issues: For n× n matrices over F ,

– Matrix multiplication can be done with O(n3) operations in F using the standard algo-
rithm.

– The determinant and inverse, and solving a linear system Mv = w can be done using
O(n3) operations in F using Gaussian elimination. (For infinite fields, need to worry
about the size of the numbers, or accuracy if doing approximate arithmetic. No such
problem in finite fields.)

– Asymptotically fastest known algorithms run in time O(n2.376). Whether time O(n2) is
possible is a long-standing open problem.
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• A caution: some notions that are familiar from Rn don’t always generalize to arbitrary Fn:

– Inner products can be counterintuitive, e.g. can have 〈v, v〉 = 0 for a nonzero vector.

– So no nice analogue of Euclidean norm, Euclidean distance.

– Hamming distance (next lecture) a typical choice for finite fields.

4


