## AM 106: Applied Algebra

## Salil Vadhan

Lecture Notes 22
November 29, 2018

## 1 Vector Spaces

- Reading: Gallian Ch. 19
- Today's main message: linear algebra (as in Math 21) can be done over any field, and most of the results you're familiar with from the case of $\mathbb{R}$ or $\mathbb{C}$ carry over.
- Def: A vector space over a field $F$ is a set $V$ with two operations $+: V \times V \rightarrow V$ (vector addition) and $\cdot: F \times V \rightarrow V$ (scalar multiplications) that satisfy the following properties:

1. $V$ is an abelian group under + .
2. $(a b) \cdot v=a \cdot(b \cdot v)$ for all $a, b \in F$ and $v \in V$.
3. $1 \cdot v=v$ for all $v \in V$.
4. $a \cdot(v+w)=a \cdot v+a \cdot w$ for all $a \in F$ and $v, w \in V$.
5. $(a+b) \cdot v=a \cdot v+b \cdot v$ for all $a, b \in F$ and $v \in V$.

- A vector space has more structure than an abelian group, but less structure than a ring (only multiplication by scalars, not multiplication of arbitrary pairs of elements of $V$ ).
- Examples and Nonexamples:
$-V=F^{n}$
$-V=\mathbb{C}, F=\mathbb{R}$
$-V=\mathbb{Z}^{n}, F=\mathbb{Z}_{2}$
$-V=F[x]$
$-V=F[x] /\langle p(x)\rangle$
$-V=R$ for a ring $R$ containing $F$.
- Def: Let $V$ be a vector space over of $F$. Vectors $v_{1}, \ldots, v_{n} \in V$ are linearly independent iff for every $c_{1}, \ldots, c_{n} \in F$, if $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$, then $c_{1}=\cdots=c_{n}=0$. The vectors $v_{1}, \ldots, v_{n}$ form a basis for $V$ iff they are linearly independent and $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=V$, where $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=\left\{c_{1} v_{1}+\cdots+c_{n} v_{n}: c_{1}, \ldots, c_{n} \in F\right\}$.
- Examples of bases:
- $(1,0,0, \cdots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)$ is a basis for $F^{n}$ for every field $F$.
- Q: Is $(1,1,0),(1,0,1),(0,1,1)$ always a basis for $F^{3}$ ?
- Bases for other examples above?
- Def: The dimension of a vector space $V$ over $F$ is the size of the largest set of linearly independent vectors in $V$. (different than Gallian, but we'll show it to be equivalent)
- A measure of "size" that makes sense even for infinite sets.
- Prop: In a finite-dimensional vector space, every linearly independent set of $\operatorname{dim}(V)$ vectors is a basis. (Later we'll see that all bases have exactly $\operatorname{dim}(V)$ vectors).

Proof: Let $v_{1}, \ldots, v_{k}$ be any set of $k=\operatorname{dim}(V)$ linearly independent vectors in $V$. To show that this is a basis, we need to show that it spans $V$. Let $w$ be any vector in $V$. Since $v_{1}, \ldots, v_{k}, w$ has more than $\operatorname{dim}(V)$ vectors, this set must be linearly dependent, i.e. there exists constants $c_{1}, \ldots, c_{k}, d \in F$, not all zero, such that $c_{1} v_{1}+\cdots+c_{k} v_{k}+d w=0$. The linear independence of $v_{1}, \ldots, v_{k}$ implies that $d \neq 0$. Thus, we can write $w=\left(c_{1} / d_{1}\right) v_{1}+$ $\cdots+\left(c_{k} / d_{k}\right) v_{k}$. So every vector in $V$ is in the span of $v_{1}, \ldots, v_{k}$.

- Q: What are the dimensions of the above examples?


## 2 Maps Between Vector Spaces

- Def (vector-space homomorphisms): Let $V$ and $W$ be two vector spaces over $F$. A function $f: V \rightarrow W$ is a linear map iff for every $x, y \in V$ and $c \in F$, we have

1. $f(x+y)=f(x)+f(y)$ (i.e. $f$ is a group homomorphism), and
2. $f(c x)=c f(x)$.
$f$ is an isomorphism if $f$ is also a bijection. If there is an isomorphism between $V$ and $W$, we say that they are isomorphic and write $V \cong W$.

- Prop: Every $n$-dimensional vector space $V$ over $F$ is isomorphic to $F^{n}$.

Proof: Let $v_{1}, \ldots, v_{n}$ be a basis for $V$.
Then an isomorphism from $F^{n}$ to $V$ is given by:

## - Corollaries:

- If $V$ is an $n$-dimensional vector space over a finite field $F$, then $|V|=|F|^{n}$.
- If $E$ is a finite field and $F$ is a subfield of $E$, then $|E|=|F|^{n}$ for some $n \in \mathbb{N}$. (Q: How does this compare to applying Lagrange's Theorem to $E$ as an additive subgroup of $F$ ?)
- if $E$ is a finite field of characteristic $p$, then $|E|=p^{n}$ for some $n \in \mathbb{N}$. (Shown on PS7 using Classification of Abelian Groups.)
- Matrices: A linear map $f: F^{n} \rightarrow F^{m}$ can be described uniquely by an $m \times n$ matrix $M$ with entries from $F$.
- $M_{i j}=f\left(e_{j}\right)_{i}$, where $e_{j}=(000 \cdots 010 \cdots 00)$ has a 1 in the $j$ 'th position.
- For $v=\left(v_{1}, \ldots, v_{n}\right) \in F^{n}, f(v)_{i}=f\left(\sum_{j} v_{j} e_{j}\right)_{i}=\sum_{j} v_{j} f\left(e_{j}\right)_{i}=\sum_{i} M_{i j} v_{j}=(M v)_{i}$, where $M v$ is matrix-vector product.
- Matrix multiplication $\leftrightarrow$ composition of linear maps.
- If $n=m$, then $f$ is an isomorphism $\Leftrightarrow \operatorname{det}(M) \neq 0$.
- Solving $M v=w$ for $v$ (when given $M$ and $w \in F^{m}$ ) is equivalent to solving a linear system with $m$ variables and $n$ unknowns.
- Example: $f: \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3}^{2}$ given by $f\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1}+2 v_{2}, 2 v_{1}+v_{3}\right)$.
- Thm: If $f: V \rightarrow W$ is a linear map, then $\operatorname{dim}(\operatorname{ker}(f))+\operatorname{dim}(\operatorname{im}(f))=\operatorname{dim}(V)$.

Proof: omitted.

- When $F$ finite, this says $|V|=|F|^{\operatorname{dim}(V)}=|F|^{\operatorname{dim}(\operatorname{ker}(f))} \cdot|F|^{\operatorname{dim}(\operatorname{im}(f))}=|\operatorname{ker}(f)| \cdot|\operatorname{im}(f)|$, just like for group homomorphisms!


## - Corollaries:

- $F^{n} \nexists F^{m}$ if $m \neq n$.
- All bases of a vector space have the same size.
- A homogenous linear system $M v=0$ for a given $m \times n$ matrix $M$ always has a nonzero solution $v$ if $n>m$ (more variables than unknowns).
- Computational issues: For $n \times n$ matrices over $F$,
- Matrix multiplication can be done with $O\left(n^{3}\right)$ operations in $F$ using the standard algorithm.
- The determinant and inverse, and solving a linear system $M v=w$ can be done using $O\left(n^{3}\right)$ operations in $F$ using Gaussian elimination. (For infinite fields, need to worry about the size of the numbers, or accuracy if doing approximate arithmetic. No such problem in finite fields.)
- Asymptotically fastest known algorithms run in time $O\left(n^{2.376}\right)$. Whether time $O\left(n^{2}\right)$ is possible is a long-standing open problem.
- A caution: some notions that are familiar from $\mathbb{R}^{n}$ don't always generalize to arbitrary $F^{n}$ :
- Inner products can be counterintuitive, e.g. can have $\langle v, v\rangle=0$ for a nonzero vector.
- So no nice analogue of Euclidean norm, Euclidean distance.
- Hamming distance (next lecture) a typical choice for finite fields.

