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1 Vector Spaces
e Reading: Gallian Ch. 19

e Today’s main message: linear algebra (as in Math 21) can be done over any field, and most
of the results you're familiar with from the case of R or C carry over.

e Def: A wvector space over a field F' is a set V' with two operations 4+ : V x V' — V (vector
addition) and - : F' x V' — V (scalar multiplications) that satisfy the following properties:

1. V is an abelian group under +.

2. (ab)-v=a-(b-v) foralla,be FandveV.

3. 1-v=vforallveV.

4. a-(v+w)=a-v+a-wforalla € F and v,w e V.
5. (a+b)-v=a-v+b-vforalla,be FandveV.

e A vector space has more structure than an abelian group, but less structure than a ring (only
multiplication by scalars, not multiplication of arbitrary pairs of elements of V).

e Examples and Nonexamples:

_V=pF"
~V=C F=R
V=2 F=1,
— V = Fl[z]

— V = R for a ring R containing F'.



e Def: Let V be a vector space over of F. Vectors vy,...,v, € V are linearly independent
iff for every c1,...,¢p, € F, if vy + -+ + cpv, = 0, then ¢ = --- = ¢, = 0. The vectors
v1,. .., 0, form a basis for V' iff they are linearly independent and Span(vy,...,v,) =V, where
Span(vy,...,v,) ={c1v1+ -+ cpvp i c1,...,cn € F}

e Examples of bases:
- (1,0,0,---,0), (0,1,0,...,0), ..., (0,0,0,...,1) is a basis for F'"* for every field F.
— Q:Is (1,1,0), (1,0,1), (0,1,1) always a basis for F3?

— Bases for other examples above?

e Def: The dimension of a vector space V over F' is the size of the largest set of linearly
independent vectors in V. (different than Gallian, but we’ll show it to be equivalent)

— A measure of “size” that makes sense even for infinite sets.

e Prop: In a finite-dimensional vector space, every linearly independent set of dim (V") vectors
is a basis. (Later we’ll see that all bases have exactly dim(V') vectors).

Proof: Let v1,...,v; be any set of k& = dim(V) linearly independent vectors in V. To
show that this is a basis, we need to show that it spans V. Let w be any vector in V. Since
v1,..., Uk, w has more than dim(V') vectors, this set must be linearly dependent, i.e. there
exists constants ci,...,ck, d € F, not all zero, such that civy + -+ 4+ cpvp + dw = 0. The
linear independence of wvy,...,v; implies that d # 0. Thus, we can write w = (¢1/dy)v1 +
-+« + (e /dy)vg. So every vector in V' is in the span of vy, ..., vg.

e Q: What are the dimensions of the above examples?

2 Maps Between Vector Spaces

e Def (vector-space homomorphisms): Let V and W be two vector spaces over F. A
function f: V — W is a linear map iff for every z,y € V and ¢ € F', we have

1. f(x+y) = f(z)+ f(y) (i.e. fisa group homomorphism), and
2. f(ex) = cf(x).

f is an isomorphism if f is also a bijection. If there is an isomorphism between V and W, we
say that they are isomorphic and write V = W.

e Prop: Every n-dimensional vector space V over F' is isomorphic to F™.

Proof: Let v1,...,v, be a basis for V.
Then an isomorphism from F"™ to V is given by:

e Corollaries:



— If V is an n-dimensional vector space over a finite field F', then |V| = |F|".
— If F is a finite field and F is a subfield of E, then |E| = |F|" for some n € N. (Q: How
does this compare to applying Lagrange’s Theorem to E as an additive subgroup of F'?)

— if E is a finite field of characteristic p, then |E| = p™ for some n € N. (Shown on PS7
using Classification of Abelian Groups.)

e Matrices: A linear map f : F™ — F™ can be described uniquely by an m x n matrix M
with entries from F'.

M;; = f(ej)i, where e; = (000---010---00) has a 1 in the j'th position.

— For v = (v1,...,vp) € F", f(v)i = f(3_;v5€5)i = 22505 f(e5)i = 22 Mijvj = (Mv),
where Mwv is matrix-vector product.

Matrix multiplication <> composition of linear maps.

— If n =m, then f is an isomorphism < det(M) # 0.

Solving Mv = w for v (when given M and w € F"™) is equivalent to solving a linear
system with m variables and n unknowns.

Example: f: 73 — Z2 given by f(v1,ve,v3) = (v1 + 2v9, 201 + v3).

Thm: If f:V — W is a linear map, then dim(ker(f)) + dim(im(f)) = dim(V).

Proof: omitted.

When F finite, this says |V| = |F|4im(V) = | p|dim(ker(£)) .| p|dimGm(f)) — | ker(f)| - [im(f)], just
like for group homomorphisms!

Corollaries:

— F" 22 F™if m #n.
— All bases of a vector space have the same size.

— A homogenous linear system Mv = 0 for a given m x n matrix M always has a nonzero
solution v if n > m (more variables than unknowns).

Computational issues: For n x n matrices over F,

— Matrix multiplication can be done with O(n?) operations in F using the standard algo-
rithm.

— The determinant and inverse, and solving a linear system Mwv = w can be done using
O(n3) operations in F using Gaussian elimination. (For infinite fields, need to worry
about the size of the numbers, or accuracy if doing approximate arithmetic. No such
problem in finite fields.)

— Asymptotically fastest known algorithms run in time O(n?37). Whether time O(n?) is
possible is a long-standing open problem.



e A caution: some notions that are familiar from R™ don’t always generalize to arbitrary F™:

— Inner products can be counterintuitive, e.g. can have (v,v) = 0 for a nonzero vector.
— So no nice analogue of Euclidean norm, Euclidean distance.

— Hamming distance (next lecture) a typical choice for finite fields.



