1 Vector Spaces

- Reading: Gallian Ch. 19

- Today’s main message: linear algebra (as in Math 21) can be done over any field, and most of the results you’re familiar with from the case of \(\mathbb{R} \) or \(\mathbb{C} \) carry over.

- **Def:** A *vector space* over a field \(F \) is a set \(V \) with two operations \(+ : V \times V \rightarrow V \) (vector addition) and \(\cdot : F \times V \rightarrow V \) (scalar multiplications) that satisfy the following properties:

 1. \(V \) is an abelian group under \(+ \).
 2. \((ab) \cdot v = a \cdot (b \cdot v) \) for all \(a, b \in F \) and \(v \in V \).
 3. \(1 \cdot v = v \) for all \(v \in V \).
 4. \(a \cdot (v + w) = a \cdot v + a \cdot w \) for all \(a \in F \) and \(v, w \in V \).
 5. \((a + b) \cdot v = a \cdot v + b \cdot v \) for all \(a, b \in F \) and \(v \in V \).

- A vector space has more structure than an abelian group, but less structure than a ring (only multiplication by scalars, not multiplication of arbitrary pairs of elements of \(V \)).

- **Examples and Nonexamples:**
 - \(V = F^n \)
 - \(V = \mathbb{C}, F = \mathbb{R} \)
 - \(V = \mathbb{Z}^n, F = \mathbb{Z}_2 \)
 - \(V = F[x] \)
 - \(V = F[x]/\langle p(x) \rangle \)
 - \(V = R \) for a ring \(R \) containing \(F \).
• **Def:** Let V be a vector space over of F. Vectors $v_1, \ldots, v_n \in V$ are *linearly independent* iff for every $c_1, \ldots, c_n \in F$, if $c_1 v_1 + \cdots + c_n v_n = 0$, then $c_1 = \cdots = c_n = 0$. The vectors v_1, \ldots, v_n form a *basis* for V iff they are linearly independent and $\text{Span}(v_1, \ldots, v_n) = V$, where $\text{Span}(v_1, \ldots, v_n) = \{c_1 v_1 + \cdots + c_n v_n : c_1, \ldots, c_n \in F\}$.

• **Examples of bases:**
 - $(1, 0, 0, \cdots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, 0, \ldots, 1)$ is a basis for F^n for every field F.
 - **Q:** Is $(1, 1, 0), (1, 0, 1), (0, 1, 1)$ always a basis for F^3?
 - Bases for other examples above?

• **Def:** The *dimension* of a vector space V over F is the size of the largest set of linearly independent vectors in V. (different than Gallian, but we’ll show it to be equivalent)

 - A measure of “size” that makes sense even for infinite sets.

• **Prop:** In a finite-dimensional vector space, every linearly independent set of $\dim(V)$ vectors is a basis. (Later we’ll see that all bases have exactly $\dim(V)$ vectors).

 Proof: Let v_1, \ldots, v_k be any set of $k = \dim(V)$ linearly independent vectors in V. To show that this is a basis, we need to show that it spans V. Let w be any vector in V. Since v_1, \ldots, v_k, w has more than $\dim(V)$ vectors, this set must be linearly dependent, i.e. there exists constants $c_1, \ldots, c_k, d \in F$, not all zero, such that $c_1 v_1 + \cdots + c_k v_k + dw = 0$. The linear independence of v_1, \ldots, v_k implies that $d \neq 0$. Thus, we can write $w = (c_1/d)v_1 + \cdots + (c_k/d_k)v_k$. So every vector in V is in the span of v_1, \ldots, v_k.

• **Q:** What are the dimensions of the above examples?

2 **Maps Between Vector Spaces**

• **Def (vector-space homomorphisms):** Let V and W be two vector spaces over F. A function $f : V \to W$ is a *linear map* iff for every $x, y \in V$ and $c \in F$, we have
 1. $f(x + y) = f(x) + f(y)$ (i.e. f is a group homomorphism), and
 2. $f(cx) = cf(x)$.

 f is an *isomorphism* if f is also a bijection. If there is an isomorphism between V and W, we say that they are *isomorphic* and write $V \cong W$.

• **Prop:** Every n-dimensional vector space V over F is isomorphic to F^n.

 Proof: Let v_1, \ldots, v_n be a basis for V.

 Then an isomorphism from F^n to V is given by:

• **Corollaries:**
If V is an n-dimensional vector space over a finite field F, then $|V| = |F|^n$.

- If E is a finite field and F is a subfield of E, then $|E| = |F|^n$ for some $n \in \mathbb{N}$. (Q: How does this compare to applying Lagrange’s Theorem to E as an additive subgroup of F?)

- if E is a finite field of characteristic p, then $|E| = p^n$ for some $n \in \mathbb{N}$. (Shown on PS7 using Classification of Abelian Groups.)

- Matrices: A linear map $f : F^n \rightarrow F^m$ can be described uniquely by an $m \times n$ matrix M with entries from F.

 - $M_{ij} = f(e_j)_i$, where $e_j = (000 \cdots 010 \cdots 00)$ has a 1 in the j'th position.
 - For $v = (v_1, \ldots, v_n) \in F^n$, $f(v)_i = f(\sum_j v_j e_j)_i = \sum_j v_j f(e_j)_i = \sum_i M_{ij} v_j = (Mv)_i$, where Mv is matrix-vector product.
 - Matrix multiplication \leftrightarrow composition of linear maps.
 - If $n = m$, then f is an isomorphism $\iff \det(M) \neq 0$.
 - Solving $Mv = w$ for v (when given M and $w \in F^m$) is equivalent to solving a linear system with m variables and n unknowns.

- Example: $f : \mathbb{Z}_3^3 \rightarrow \mathbb{Z}_2^3$ given by $f(v_1, v_2, v_3) = (v_1 + 2v_2, 2v_1 + v_3)$.

- Thm: If $f : V \rightarrow W$ is a linear map, then $\dim(\ker(f)) + \dim(\text{im}(f)) = \dim(V)$.

 Proof: omitted.

- When F finite, this says $|V| = |F|^\dim(V) = |F|^\dim(\ker(f)) \cdot |F|^\dim(\text{im}(f)) = |\ker(f)| \cdot |\text{im}(f)|$, just like for group homomorphisms!

- Corollaries:
 - $F^n \not\cong F^m$ if $m \neq n$.
 - All bases of a vector space have the same size.
 - A homogenous linear system $Mv = 0$ for a given $m \times n$ matrix M always has a nonzero solution v if $n > m$ (more variables than unknowns).

- Computational issues: For $n \times n$ matrices over F,
 - Matrix multiplication can be done with $O(n^3)$ operations in F using the standard algorithm.
 - The determinant and inverse, and solving a linear system $Mv = w$ can be done using $O(n^3)$ operations in F using Gaussian elimination. (For infinite fields, need to worry about the size of the numbers, or accuracy if doing approximate arithmetic. No such problem in finite fields.)
 - Asymptotically fastest known algorithms run in time $O(n^{2.376})$. Whether time $O(n^2)$ is possible is a long-standing open problem.
• **A caution:** some notions that are familiar from \mathbb{R}^n don’t always generalize to arbitrary F^n:

 – Inner products can be counterintuitive, e.g. can have $\langle v, v \rangle = 0$ for a nonzero vector.
 – So no nice analogue of Euclidean norm, Euclidean distance.
 – Hamming distance (next lecture) a typical choice for finite fields.