AM 106/206: Applied Algebra

Prof. Salil Vadhan

Final Exam Practice Problems

December 2018

Problem 1. (True/False) Justify your answers with one or two sentences.

1. There is a field with 6 elements.
2. There is a vector space with 6 elements.
3. There is a group with 6 elements.
4. There is a commutative ring with unity with 6 elements.
5. Every finite group is a subgroup of a permutation group.
6. Every monic polynomial in $\mathbb{F}[x]$, where \mathbb{F} is a field, is the product of monic irreducible polynomials, and this product is unique up to order.
7. The ring $\mathbb{F}[x, y]$ of bivariate polynomial over a field \mathbb{F} is a principal ideal domain.
8. There exists an error-correcting code mapping 20 letter sequences from \mathbb{Z}_{97} to 40 letter sequences over \mathbb{Z}_{97} such that every pair of sequences differ in 20 locations.
9. The multiplicative inverse of an element in the field $\mathbb{F}[x] /\langle p(x)\rangle$ can be computed in poly (n) operations over the field \mathbb{F}, where $n=\operatorname{deg}(p)$ a $p(x)$ is a monic irreducible polynomial.
10. If G is a cyclic group of order n and $d \mid n$, then G contains an element of order d.
11. There is a group of order 100 that has a subgroup of order 40 .
12. (153) is an even permutation.
13. Groups \mathbb{Z}_{77}^{*} and $\mathbb{Z}_{2} \times \mathbb{Z}_{30}$ are isomorphic.
14. For every prime p, there is an integral domain with p^{2} elements.
15. There is a polynomial-time algorithm that given an integer N, finds descriptions of finite fields F_{1} and F_{2} such that the ring \mathbb{Z}_{N} is isomorphic to $F_{1} \times F_{2}$, whenever such fields F_{1} and F_{2} exist.
16. \mathbb{Z}_{91}^{*} is isomorphic to a subgroup of S_{72}.
17. For all groups G, H and homomorphisms $\varphi: G \rightarrow H, G / \operatorname{ker}($ varphi $) \cong H$.

Problem 2. (Subgroups of S_{3})

1. Draw the subgroup lattice of S_{3}.
2. Find a subgroup $H \leq S_{3}$ such that the operation of S_{3} does not give a well-defined group operation on the left-cosets of H. That is, there are elements $a, a^{\prime}, b, b^{\prime} \in S_{3}$ such that $a H=a^{\prime} H$ and $b H=b^{\prime} H$, but $a b H \neq a^{\prime} b^{\prime} H$.
3. For the H you found above, prove that there is no group G^{\prime} and homomorphism $\varphi: G \rightarrow G^{\prime}$ such that $\operatorname{ker}(\varphi)=H$.

Problem 3. (Ideals and Factor Rings)

1. Which elements $a+b \sqrt{2}$ of the ring $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$ are contained in the ideal $\langle\sqrt{2}\rangle$?
2. Determine the factor ring $\mathbb{Z}[\sqrt{2}] /\langle\sqrt{2}\rangle$.
3. Is $\langle\sqrt{2}\rangle$ a maximal ideal?

Problem 4. (Ring Isomorphisms) For each of the following pairs (R_{1}, R_{2}) of rings, determine whether (a) R_{1} and R_{2} are isomorphic rings, and (b) the additive groups of R_{1} and R_{2} are isomorphic.

1. $R_{1}=\mathbb{Z}, R_{2}=\{$ even integers $\}$ (under ordinary addition and multiplication).
2. $R_{1}=\mathbb{Z}_{5}[x] /\left\langle x^{3}+2 x^{2}+x\right\rangle, R_{2}=\mathbb{F}_{125}$. (Recall that \mathbb{F}_{125} is the same as $\operatorname{GF}(125)$.)
3. $R_{1}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}, R_{2}=\mathbb{R}[x] / I$ for $I=\{p(x) \in \mathbb{R}[x]: p(1)=p(2)=p(3)=0\}$.

Problem 5. (Finite Fields)

1. List all monic irreducible polynomials of degree 1 in $\mathbb{Z}_{3}[x]$.
2. Prove that $E=\mathbb{Z}_{3}[x] /\left\langle x^{3}+2 x^{2}+1\right\rangle$ is a field.
3. What is the dimension of $E=\mathbb{Z}_{3}[x] /\left\langle x^{3}+2 x^{2}+1\right\rangle$ as a vector space over \mathbb{Z}_{3} ? What is $|E|$?
4. Let α be a non-zero element of E. What are the possible values for α 's additive order? What are the possible values for α 's multiplicative order?
