AM 106/206: Applied Algebra

Prof. Salil Vadhan

Final Exam Practice Problems

December 2018

Problem 1. (True/False) Justify your answers with one or two sentences.

- 1. There is a field with 6 elements.
- 2. There is a vector space with 6 elements.
- 3. There is a group with 6 elements.
- 4. There is a commutative ring with unity with 6 elements.
- 5. Every finite group is a subgroup of a permutation group.
- 6. Every monic polynomial in $\mathbb{F}[x]$, where \mathbb{F} is a field, is the product of monic irreducible polynomials, and this product is unique up to order.
- 7. The ring $\mathbb{F}[x, y]$ of bivariate polynomial over a field \mathbb{F} is a principal ideal domain.
- 8. There exists an error-correcting code mapping 20 letter sequences from \mathbb{Z}_{97} to 40 letter sequences over \mathbb{Z}_{97} such that every pair of sequences differ in 20 locations.
- 9. The multiplicative inverse of an element in the field $\mathbb{F}[x]/\langle p(x)\rangle$ can be computed in poly(n) operations over the field \mathbb{F} , where $n = \deg(p)$ a p(x) is a monic irreducible polynomial.
- 10. If G is a cyclic group of order n and d|n, then G contains an element of order d.
- 11. There is a group of order 100 that has a subgroup of order 40.
- 12. (153) is an even permutation.
- 13. Groups \mathbb{Z}_{77}^* and $\mathbb{Z}_2 \times \mathbb{Z}_{30}$ are isomorphic.
- 14. For every prime p, there is an integral domain with p^2 elements.
- 15. There is a polynomial-time algorithm that given an integer N, finds descriptions of finite fields F_1 and F_2 such that the ring \mathbb{Z}_N is isomorphic to $F_1 \times F_2$, whenever such fields F_1 and F_2 exist.
- 16. \mathbb{Z}_{91}^* is isomorphic to a subgroup of S_{72} .
- 17. For all groups G, H and homomorphisms $\varphi: G \to H, G/\ker(varphi) \cong H$.

Problem 2. (Subgroups of S_3)

- 1. Draw the subgroup lattice of S_3 .
- 2. Find a subgroup $H \leq S_3$ such that the operation of S_3 does not give a well-defined group operation on the left-cosets of H. That is, there are elements $a, a', b, b' \in S_3$ such that aH = a'H and bH = b'H, but $abH \neq a'b'H$.
- 3. For the H you found above, prove that there is no group G' and homomorphism $\varphi: G \to G'$ such that $\ker(\varphi) = H$.

Problem 3. (Ideals and Factor Rings)

- 1. Which elements $a + b\sqrt{2}$ of the ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ are contained in the ideal $\langle \sqrt{2} \rangle$?
- 2. Determine the factor ring $\mathbb{Z}[\sqrt{2}]/\langle\sqrt{2}\rangle$.
- 3. Is $\langle \sqrt{2} \rangle$ a maximal ideal?

Problem 4. (Ring Isomorphisms) For each of the following pairs (R_1, R_2) of rings, determine whether (a) R_1 and R_2 are isomorphic rings, and (b) the *additive* groups of R_1 and R_2 are isomorphic.

- 1. $R_1 = \mathbb{Z}, R_2 = \{\text{even integers}\}$ (under ordinary addition and multiplication).
- 2. $R_1 = \mathbb{Z}_5[x]/\langle x^3 + 2x^2 + x \rangle, R_2 = \mathbb{F}_{125}$. (Recall that \mathbb{F}_{125} is the same as GF(125).)
- 3. $R_1 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}, R_2 = \mathbb{R}[x]/I$ for $I = \{p(x) \in \mathbb{R}[x] : p(1) = p(2) = p(3) = 0\}.$

Problem 5. (Finite Fields)

- 1. List all monic irreducible polynomials of degree 1 in $\mathbb{Z}_3[x]$.
- 2. Prove that $E = \mathbb{Z}_3[x]/\langle x^3 + 2x^2 + 1 \rangle$ is a field.
- 3. What is the dimension of $E = \mathbb{Z}_3[x]/\langle x^3 + 2x^2 + 1 \rangle$ as a vector space over \mathbb{Z}_3 ? What is |E|?
- 4. Let α be a non-zero element of E. What are the possible values for α 's additive order? What are the possible values for α 's multiplicative order?