Problem Set 0

Assigned: Tue. Sept. 4, 2018
Due: Fri. Sept. 14, 2018 (5:00 sharp)

- This problem set is optional and will not count for your grade. However, if you have not taken a prior proof-based math course, it is strongly encouraged that you complete and turn in the problem set for practice and feedback on doing proofs.
- You must submit your problem sets electronically on course Canvas site. If you use $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, please submit both the source (.tex) and the compiled file (.pdf). Name your files PSO-yourlastname.

Problem 1. (Proof by Contradiction) Prove that $\log _{2} 6$ is an irrational number.
Problem 2. (Set Equality) Which of the following is true? Prove your answers.

- For every three sets A, B, C, we have $A \cup(B \cap C)=(A \cup B) \cap C$.
- For every three sets A, B, C, we have $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Problem 3. (Induction) The Fibonacci numbers F_{0}, F_{1}, \ldots are defined inductively by $F_{0}=0$, $F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 1$. Thus the sequence (starting at F_{0}) is $0,1,1,2,3,5,8,13,21, \ldots$. Prove by induction that for $n \geq 2, F_{n} \geq \varphi^{n-2}$, where $\varphi=(1+\sqrt{5}) / 2$ is the golden ratio.

Problem 4. (Incorrect Induction) What is the wrong with the following proof by induction?
Claim: In every set of n students, all students have the same height.
"Proof" by Induction:

- Base Case: For every set of size 1, the claim is clearly true (all the students in that set have the same height).
- Induction Step: Assume that the claim is true for sets of k students (this is the induction hypothesis), and we'll prove that it also holds for sets of $k+1$ students. Consider an arbitrary set S consisting of $k+1$ students, say $S=\left\{p_{1}, \ldots, p_{k+1}\right\}$. Let $S^{\prime}=\left\{p_{1}, \ldots, p_{k}\right\}$. Since $\left|S^{\prime}\right|=k$, our induction hypothesis tells us that all students in S^{\prime} have the same height. So now we only need to show that p_{k+1} has the same height too. To do this, consider the set $S^{\prime \prime}=\left\{p_{2}, \ldots, p_{k+1}\right\}$. Since $\left|S^{\prime \prime}\right|=k$, the induction hypothesis also tells us that all students in $S^{\prime \prime}$ have the same height. In particular, p_{k+1} has the same height as p_{2}, and hence the same height as all students in S^{\prime}.

