Problem Set 6

Assigned: Fri. Oct. 26, 2018
Due: Fri. Nov. 2, 2018 (11:59pm sharp)

- You must submit your problem sets electronically on the course Canvas site. If you use $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, please submit both the source (.tex) and the compiled file (.pdf). Name your files PS6-yourlastname.
- Aim for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details.

Problem 1. (Homomorphisms from a Cyclic Group, 10pts) How many homomorphisms are there from \mathbb{Z}_{4} to S_{4} ? (Hint: how does $\varphi(x)$ relate to $\varphi(1)$? And what can we say about the order of $\varphi(1)$?)

Problem 2. (Factor Groups and Homomorphisms, 15pts) For each of the following groups G and subsets $H \subseteq G$, determine whether H is a normal subgroup of G. If yes, then find a familiar group G^{\prime} such that $G / H \cong G^{\prime}$, and prove that $G / H \cong G^{\prime}$ by giving an appropriate homomorphism from G to G^{\prime}.

1. $G=\mathbb{Z}, H=\{$ odd integers $\}$.
2. $G=\mathbb{Q} \times \mathbb{Q}, H=\{(q, q): q \in \mathbb{Q}\}$.
3. $G=S_{5} \times S_{5}, H=\left\{(\sigma, \sigma): \sigma \in S_{5}\right\}$.
4. $G=G L_{n}(\mathbb{R}), H=\left\{M \in G L_{n}(\mathbb{R}): \operatorname{det}(M) \in\{-1,1\}\right\}$.
5. $G=\mathbb{Z}_{19}^{*}, H=\{$ the squares in $G\}$.
6. $G=\mathbb{Z}_{57}^{*}, H=\{$ the squares in $G\}$.

Problem 3. (The $\mathbf{S i}(\mathbf{1 1 1})$ Reconstructed Face, 13pts) Attached is a piece of the reconstructed $\mathrm{Si}(111)$ face, which is repeated infinitely to form a 2-D crystal F. (This face is obtained by cutting a 3-D silicon crystal along a different plane than the one giving the $\operatorname{Si}(100)$ face seen in lecture.)

1. On the attached diagram, draw two vectors that generate the translation lattice of F.
2. Find and mark a point p of maximal rotational symmetry, and determine the group $\operatorname{Point}(F, p)$.
3. Use the flowchart in Gallian Figure 28.18 to classify $\operatorname{Isom}(F, p)$ among the 17 2-D crystallographic groups.
4. Using generators for $\operatorname{Point}(F, p)$, determine whether the diffusivity of the $\operatorname{Si}(111)$ face is isotropic.

Problem 4. (From Translations and Point Groups to the Full Symmetry Group, 22pts)
Let E_{2} be the 2-dimensional Euclidean group, i.e., the group of isometries in \mathbb{R}^{2} under composition. Let $F: \mathbb{R}^{2} \rightarrow X$ be a 2 -dimensional crystal.

1. Let E_{2}^{+}denote the set of rotations in E_{2}, i.e. the set of isometries of the form $T(x)=\operatorname{Rot}_{\theta} x+b$, for $\theta \in[0,2 \pi)$ and $b \in \mathbb{R}^{2}$. Show that E_{2}^{+}is a subgroup of E_{2}, and that it is of index 2 .
2. Show that for a group G and two subgroups $H \leq G$ and $G^{+} \leq G$ such that $\left[G: G^{+}\right]=2$, the subgroup $H^{+}:=H \cap G^{+}$satisfies that either $H^{+}=H$ or $\left[H: H^{+}\right]=2$.

Below it will be useful to apply this with $G=E_{2}, G^{+}=E_{2}^{+}$, and either $H=\operatorname{Isom}(F)$ or $H=\operatorname{Point}(F, p)$. Consequently we define $\operatorname{Isom}(F)^{+}=\operatorname{Isom}(F) \cap E_{2}^{+}$and $\operatorname{Point}(F, p)^{+}=$ Point $(F, p) \cap E_{2}^{+}$.
3. Let $\operatorname{Rot}(F)=\left\{\operatorname{Rot}_{\theta}: \exists b\right.$ s.t. $T(x)=\operatorname{Rot}_{\theta} x+b$ is in $\left.\operatorname{Isom}(F)\right\}$. Assuming that $\operatorname{Rot}(F)$ is nontrivial (i.e. contains a rotation other than Rot_{0}), let θ^{*} be the smallest positive number such that $\operatorname{Rot}_{\theta^{*}} \in \operatorname{Rot}(F)$. Show that $\operatorname{Rot}(F)$ is a cyclic group generated by $\operatorname{Rot}_{\theta^{*}}$. (As shown in class/section, $\theta^{*} \in\{\pi / 3, \pi / 2,2 \pi / 3, \pi\}$.)
4. Prove that if p is taken to be a point of highest rotational symmetry (i.e. Point (F, p) contains $\operatorname{Rot}_{\theta^{*}} x+b$ for an appropriate choice of b), then

$$
\operatorname{Isom}(F)^{+}=\left\{T_{1} \circ T_{2}: T_{1} \in \operatorname{Trans}(F), T_{2} \in \operatorname{Point}(F, p)^{+}\right\} \stackrel{\text { def }}{=} \operatorname{Trans}(F) \circ \operatorname{Point}(F, p)^{+}
$$

(For notational simplicity, you may take assume that $p=0$.)
5. Deduce that if p is a point of highest rotational symmetry, then one of the following cases must hold:
(a) $\operatorname{Isom}(F)$ does not contain a reflection or glide-reflection, and $\operatorname{Isom}(F)=\operatorname{Trans}(F) \circ$ Point (F, p).
(b) $\operatorname{Point}(F, p)$ contains a reflection, and $\operatorname{Isom}(F)=\operatorname{Trans}(F) \circ \operatorname{Point}(F, p)$.
(c) Isom (F) contains a reflection or glide-reflection R, $\operatorname{Point}(F, p)$ does not contain a reflection, and $\operatorname{Isom}(F)=(\operatorname{Trans}(F) \circ \operatorname{Point}(F, p)) \cup(\operatorname{Trans}(F) \circ \operatorname{Point}(F, p) \circ R)$.

In particular, we can obtain generators for $\operatorname{Isom}(F)$ by taking generators for $\operatorname{Point}(F, p)$ (at most 2 needed), generators for $\operatorname{Trans}(F)$ (exactly 2 needed), and possibly an additional reflection R.

The $\mathrm{Si}(111)$ reconstructed face.

The circles are Silicon atoms, with the size and color indicating depth from the surface. Ignore the dotted lines, numbers, whited-out material, and other imperfections in the diagram.

[^0]
[^0]: Diagram based on article by Brommer et al., Phys. Rev. Lett. A, 68(2), pp. 1356-1359.

