Harvard CS 121 and CSCI E-207
Lecture 17: Undecidability

Salil Vadhan

November 1, 2012

• Reading: Sipser §4.2, §5.1.
Motivation

- **Goal**: to find an explicit undecidable language

- By the Church–Turing thesis, such a language has a membership problem that cannot be solved by any kind of algorithm

- We know such languages exist, by a counting argument.
 - Every recursive language is decided by a TM
 - There are only countably many TMs
 - There are uncountably many languages

∴ Most languages are not recursive (or even r.e.)
Is every Turing-recognizable set decidable?

This would be true if there were an algorithm to solve

The Acceptance Problem:

Given a TM M and an input w, does M accept input w?

Formally, $A_{TM} = \{\langle M, w \rangle : M \text{ accepts } w \}$.
Completeness of A_{TM}

Proposition: If A_{TM} is recursive, then every r.e. language is recursive.

“A$_{TM}$ is the hardest r.e. language.”

- A_{TM} is said to be *r.e.-complete*, that is, it is a problem
 (a) that is r.e. and
 (b) to which every r.e. problem is reducible

Proof:
A simplifying detail: every string represents some TM

• Let Σ be the alphabet over which TMs are represented (that is, $\langle M \rangle \in \Sigma^*$ for any TM M)

• Let $w \in \Sigma^*$

• if $w = \langle M \rangle$ for some TM M then w represents M

• Otherwise w represents some fixed TM M_0 (say the simplest possible TM).
Thm: A_{TM} is not recursive

- Look at A_{TM} as a table answering every question:

<table>
<thead>
<tr>
<th>w_0</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
 | M_1 | Y | Y | N | N | (WLOG assume every string w_i)
 | M_2 | N | N | N | N |
 | M_3 | Y | Y | Y | Y |

- Entry matching (M_i, w_j) is Y iff M_i accepts w_j

- If A_{TM} were recursive, then so would be the diagonal D and its complement.

 - $D = \{w_i : M_i \text{ accepts } w_i\}$.
 - $\overline{D} = \{w_i : M_i \text{ does not accept } w_i\}$.

- But \overline{D} differs from every row, i.e. it differs from every r.e. language. $\Rightarrow \Leftarrow$.
Unfolding the Diagonalization

• Suppose for contradiction that A_{TM} were recursive.

• Then there is a TM M^* that decides $D = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle \}$:

• Run M^* on its own description $\langle M^* \rangle$.

• Does it accept?
 M^* accepts $\langle M^* \rangle$

 $\iff \langle M^* \rangle \in \overline{D}$

 $\iff M^*$ does not accept $\langle M^* \rangle$.

• Contradiction!
Alan Mathison Turing (1912-1954)

24 years old when he published *On computable numbers* . . .
Some More Undecidable Problems About TMs

• The Halting Problem: Given M and w, does M halt on input w?

Proof:

Suppose $\text{HALT}_{\text{TM}} = \{\langle M, w \rangle : M \text{ halts on } w\}$ were decided by some TM H.

Then we could use H to decide A_{TM} as follows.

On input $\langle M, w \rangle$,

• Modify M so that whenever it is about to go into q_{reject}, it instead goes into an infinite loop. Call the resulting TM M'.

• Run $H(\langle M', w \rangle)$ and do the same.

Note that M' halts on w iff M accepts w, so this is indeed a decider for A_{TM}. $\Rightarrow\Leftarrow$.
Undecidable Problems, Continued

• For a certain fixed M_0:

 Given w, does M_0 halt on input w?

What about:

• For a fixed M_0 and a fixed w_0, does M_0 halt on input w_0?
Further Undecidable Problems

• Given M, does M halt on the empty string?

 Proof by reduction:
“Co-X”

- For any property X that a set might have, a set S is co-X iff \overline{S} has property X.

- For example, a co-finite set of natural numbers is a set that is missing only a finite number of elements.

- A co-regular language is . . . ?

- A co-recursive language is . . . ?

- What about a co-CF language?

- We proved earlier today:
 - A language is recursive if and only if it is both r.e. and co-r.e.
Non-r.e. Languages

Theorem: The following languages are not r.e.:

- $\overline{A_{TM}} = \{ \langle M, w \rangle : M \text{ does not accept } w \}$
- $\overline{HALT_{TM}} = \{ \langle M, w \rangle : M \text{ does not halt on } w \}$
- $\overline{HALT_{TM}^\epsilon} = \{ \langle M \rangle : M \text{ does not halt on } \epsilon \}$

Proof:
Formalizing the Notion of Reduction

- \(L_1 \) “reduces” to \(L_2 \) if we can use a “black box” for \(L_2 \) to build an algorithm for \(L_1 \).

- A function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) is computable if there is a Turing machine that for every input \(w \in \Sigma_1^* \), \(M \) halts with just \(f(w) \) on its tape.

- A (mapping) reduction of \(L_1 \subseteq \Sigma_1^* \) to \(L_2 \subseteq \Sigma_2^* \) is a computable function

 \[f : \Sigma_1^* \rightarrow \Sigma_2^* \]

 such that, for any \(w \in \Sigma^* \),

 \[w \in L_1 \iff f(w) \in L_2 \]

We write \(L_1 \leq_m L_2 \).
Properties of Reducibility

Lemma: If \(L_1 \leq_m L_2 \), then

- if \(L_2 \) is decidable (resp., r.e.), then so is \(L_1 \);
- if \(L_1 \) is undecidable (resp., non-r.e.), then so is \(L_2 \).
Examples of Reductions from This Lecture

- For every Turing-recognizable L, $L \leq_m A_{TM}$.

- $A_{TM} \leq_m \text{HALT}_{TM}$.

- $\text{HALT}_{TM} \leq_m \text{HALT}_{TM}^\varepsilon$.