Overview

This week we will focus on reviewing the core concepts involved with NP, polynomial-time reducibility, and NP-Completeness.

1 Concept Review

1.1 Nondeterministic Polynomial Time

A verifier for a language \(L \) is an algorithm \(V \) such that \(L = \{ x : V \text{ accepts } \langle x, y \rangle \text{ for some string } y \} \). A polynomial time verifier is the one that runs in time polynomial in \(|x|\) on input \(\langle x, y \rangle \).

Definition 1.1 \(\text{NP} \) is the class of languages with polynomial time verifiers.

Usually there are two equivalent describes of \(\text{NP} \), however we do always use the one above.

1.2 Polynomial-time reducibility and NP-completeness

Definition 1.2 We say a language \(L_1 \subseteq \Sigma_1^* \) is polynomial-time reducible to another language \(L_2 \subseteq \Sigma_2^* \) (i.e., \(L_1 \leq_p L_2 \)) if there is a polynomial-time computable function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) such that for every \(x \in \Sigma_1^* \), \(x \in L_1 \iff f(x) \in L_2 \).

In this definition, it requires the reductions to be polynomial time, which is different with the previous definition of computable reductions.

Definition 1.3 A language \(L \) is \(\text{NP} \)-complete if and only if,

1. \(L \in \text{NP} \),

2. Every language in \(\text{NP} \) is polynomial-time reducible to \(L \).

Intuitively, \(\text{NP} \)-complete languages are the hardest \(\text{NP} \) languages. If there is an \(\text{NP} \)-complete problem which can be resolved in polynomial time, then \(\text{P} = \text{NP} \).

1.3 Cook-Levin Theorem

Theorem 1.1 SAT (Boolean satisfiability) is \(\text{NP} \)-complete.

To prove this theorem, we have to show that every \(\text{NP} \) problem is polynomial reducible to SAT. Let \(L \) be an \(\text{NP} \) problem which decided by a nondeterministic TM \(M \), then the main idea of the reduction is to describe computations of \(M \) by boolean variables.
2 Exercises

Exercise 2.1 Determine, with proof, whether NP is closed under Kleene star.

Exercise 2.2 We define Hitting Set to be the problem of determining, given a family of sets $\mathcal{F} = \{S_1, S_2, \ldots, S_n\}$ and an integer B, whether there is a set H with B or fewer elements such that for each $S_i \in \mathcal{F}$ we have $S_i \cap H \neq \emptyset$. Prove that Hitting Set is NP-complete.

Hint: Reduce from Vertex Cover.

Exercise 2.3 We have shown in class that the languages $\text{CLIQUE} = \{(G, k) : \text{The graph } G \text{ contains a clique of size } k\}$ and $\text{TSP} = \{(m, D, B) : \text{There exists a tour of the } m \text{ cities with distance function } D \text{ of length } \leq B\}$ are in NP. Now show that if $P = NP$, then

(a) Given a graph G, we can determine in polynomial time the size of the largest clique in G

(b) Given m cities with distance function D, we can determine in polynomial time the length of the shortest tour of all the cities.

Exercise 2.4 Given a list of currencies $1, \ldots, n$, and a matrix M with positive rational entries, where $M_{i,j}$ is the exchange rate between currencies i and j, we say there is an arbitrage of value at least v if there exists a sequence of currency exchanges $(a_1, \ldots, a_k, a_{k+1} = a_1)$, $k \geq 2$, a_1, \ldots, a_k being distinct currencies, such that

$$\prod_{i=1}^{k} M_{a_i, a_{i+1}} \geq v.$$

In the Arbitrage problem, you are given some matrix M and a positive rational number v, and are asked to determine whether there is an arbitrage of value v. In the real world, if there exists an arbitrage value greater than 1, then some sequence of currency exchanges allows one to make essentially risk-free money.

(a) Show that Arbitrage can be solved in polynomial-time if $M_{i,j} \leq 1$ for all currencies i, j.

(b) Show that Arbitrage is NP-complete. (Hint: Reduce from HamPath, which is shown to be NP-complete in Sipser.)