Overview

This week we will focus on reviewing the core concepts involved with undecidability, reducibility, Rice’s theorem, incompleteness of mathematics, and so on.

1 Concept Review

1.1 Undecidability

By a cardinality argument, we know that almost all languages are undecidable. This argument, however, does not give us an explicit construction. The following theorem does just that.

Theorem 1.1. The language \(\{\langle M, w \rangle : M \text{ accepts the input } w \} \) is not decidable.

Proof. Assume \(\{\langle M, w \rangle : M \text{ accepts the input } w \} \) is decidable, then the language \(D = \{\langle M \rangle : M \text{ does not accepts } \langle M \rangle \} \) is decidable. Suppose \(D \) is decidable by \(M_1 \), then \(\langle M_1 \rangle \in D \) iff \(M_1 \) accepts \(\langle M_1 \rangle \) iff \(\langle M_1 \rangle \in D \), which is a contradiction. (This is the standard diagonalization argument.) \(\square \)

1.2 Reducibility

Definition 1.1. A function \(f : \Sigma^*_1 \to \Sigma^*_2 \) is computable if there is a Turing machine such that for every input \(w \in \Sigma^*_1 \), \(M \) halts with just \(f(w) \) on its tape.

Definition 1.2. A reduction of \(L_1 \subseteq \Sigma^*_1 \) to \(L_2 \subseteq \Sigma^*_2 \) is a computable function \(f : \Sigma^*_1 \to \Sigma^*_2 \) such that, for any \(w \in \Sigma^*, w \in L_1 \) if and only if \(f(w) \in L_2 \), and we write \(L_1 \leq_m L_2 \).

Intuitively, \(L_1 \) reduces to \(L_2 \) means that \(L_1 \) is not harder than \(L_2 \). More formally, we can express this intuition in the following lemma.

Lemma 1.1. If \(L_1 \leq_m L_2 \) and \(L_1 \) is undecidable, then so it \(L_2 \).
1.3 Rice’s theorem

Theorem 1.2 (Rice’s theorem). Let \(\mathcal{P} \) be any subset of the class of r.e. languages such that \(\mathcal{P} \) and its complement are both nonempty. Then the language \(L_\mathcal{P} = \{ \langle M \rangle : L(M) \in \mathcal{P} \} \) is undecidable.

Intuitively, Rice’s theorem states that Turing machines can not test whether another Turing machine satisfies a (nontrivial) property. For example, let \(\mathcal{P} \) be the subset of the recursively enumerable languages which contains the string \(a \). Then Rice’s theorem claims that there is no Turing machine which can decide whether a Turing machine accepts \(a \).

2 Exercises

Exercise 2.1. Reductions can be tricky to get the hang of, and you want to avoid “going the wrong way” with them. In which of these scenarios does \(L_1 \leq_m L_2 \) provide useful information (and in those cases, what may we conclude)?

(a) \(L_1 \)’s decidability is unknown and \(L_2 \) is undecidable

(b) \(L_1 \)’s decidability is unknown and \(L_2 \) is decidable

(c) \(L_1 \) is undecidable and \(L_2 \)’s decidability is unknown

(d) \(L_1 \) is decidable and \(L_2 \)’s decidability is unknown

Exercise 2.2. Argue that \(\leq_m \) is a transitive relation.

Exercise 2.3. Determine, with proof, whether the following languages are decidable.

(a) \(L = \{ \langle M, x \rangle : \text{At some point it its computation on } x, M \text{ re-enters its start state} \} \)

(b) \(L = \{ \langle x, y \rangle : f(x) = y \} \) where \(f \) is a fixed computable function.

(c) \(\text{CF}_{TM} = \{ \langle M \rangle : L(M) \text{ is context-free} \} \)

Exercise 2.4. Show \(\{ G : G \text{ is a CFG generating } x \} \leq_M \{ G : G \text{ is a CFG generating } xy \} \).