Recommended Reading.

- Katz–Lindell §3.4.3, 3.5, 6.5.

1 Introduction

Defining the security of a cryptographic primitive involves three aspects:

1. What constitutes a ‘break’?
2. What are the adversary’s resources?
3. What is the adversary’s access to the system?

In this lecture, we will generalize our views of the first and third aspects of private-key encryption.

2 Multiple-Message Security

Definition 1 (multiple-message indistinguishability) Let (G, E, D) be an encryption scheme over $\mathcal{P} = \bigcup_n \mathcal{P}_n$. (G, E, D) satisfies multiple-message indistinguishability if for every (nonuniform) PPT A and every polynomial q, there is a negligible function ε such that for all $\overline{m}_0 = (m_0^1, \ldots, m_0^{q(n)})$, $\overline{m}_1 = (m_1^1, \ldots, m_1^{q(n)}) \in \mathcal{P}_n^{q(n)}$ such that $\|m_i^0\| = \|m_i^1\|$ for all i, we have

$$\left| \Pr\left[A(E_K(m_0^1), \ldots, E_K(m_0^{q(n)})) = 1 \right] - \Pr\left[A(E_K(m_1^1), \ldots, E_K(m_1^{q(n)})) = 1 \right] \right| \leq \varepsilon(n),$$

where the probabilities above are taken over $K \leftarrow G(1^n)$, the coin tosses of E_K, and the coin tosses of A.

Remark: it suffices to consider \overline{m}_0 and \overline{m}_1 that differ in at most one component.

A (stateful) construction:
Proposition 2 There is no secure encryption scheme in which \(E \) is deterministic and stateless.

3 Pseudorandom Functions

- Motivation: stateless secure encryption. Two parties share a short key \(k \) that allows them to generate exponentially many pseudorandom pads. To encrypt, they pick one at random and use it as a one-time pad.

- Define \(\mathcal{R}_\ell \) to be the set of all functions from \(\{0, 1\}^\ell \) to \(\{0, 1\}^\ell \).

Definition 3 \(\mathcal{F} = \bigcup_n \mathcal{F}_n \), where \(\mathcal{F}_n = \{ f_k : \{0, 1\}^{\ell(n)} \to \{0, 1\}^{\ell(n)} \}_{k \in \mathcal{I}_n} \), is a family of pseudorandom functions (PRFs) if

- There is a PPT \(G \) such that \(G(1^n) \in \mathcal{I}_n \).
- Given \(k \in \mathcal{I}_n \), and \(x \in \{0, 1\}^{\ell(n)} \), can evaluate \(f_k(x) \) in time \(\text{poly}(n) \).
- For every PPT \(D \), there is a negligible function \(\varepsilon \) such that

\[
\left| \Pr[D^f(1^n) = 1] - \Pr[D^k(1^n) = 1] \right| \leq \varepsilon(n),
\]

where the probabilities are taken over \(K \sim \mathcal{R}(1^n) \), \(f \sim \mathcal{R}_{\ell(n)} \), and the coin tosses of \(D \).

- Notes:

 - Often (and in KL), \(\mathcal{I}_n = \{0, 1\}^n \), \(G(1^n) \) outputs random \(n \)-bit string, and \(\ell(n) = n \).
 - The key \(k \) is secret so the adversary \(D \) cannot evaluate \(f_k \) on its own (unlike collections of one-way functions).
 - A short key \(k \) generates a very large amount shared pseudorandomness: \(\ell \cdot 2^\ell \) pseudorandom bits from \(n \)-bit key! We can consider a pseudorandom function to be \(2^{\ell(n)} \) blocks, each of length \(\ell(n) \). The block position corresponds to \(x \) and the block contains the value \(f_k(x) \). This sequence is too long to be read in polynomial time so the PPT adversary will have random access to the sequence.

- How to understand \(f \sim \mathcal{R}_\ell \), i.e. a truly random function from \(\mathcal{R}_\ell \)? The static view is that the values of \(f \) are chosen all at once. The dynamic view is the following: when \(f(x) \) queried for the first time, it is set to a random value (remembered for future queries). Random values are chosen on the fly for \(f(x) \), with the provision that we will get the same answer \(f(x) \) if we query twice at the same point \(x \).
• Shared Random Function Paradigm
 – Design scheme where all honest parties share a truly random function.
 – Prove it secure in this case.
 – Replace truly random function with pseudorandom function.
 – Use definition of PRF to deduce that it remains secure.
 – Important: adversary does not share the function!

4 Encryption from PRFs
• The encryption scheme is as follows:
 – $E_k(m)$ for $m \in \{0, 1\}^\ell$: Choose $r \overset{R}{\leftarrow} \{0, 1\}^\ell$. Output $c = (r, f_k(r) \oplus m)$.
 – $D_k((r, s)) = f_k(r) \oplus s$.
• Theorem 4 If a pseudorandom function family with $\ell(n) = n$ is used, the above encryption scheme is secure.

• Proof Sketch:
The proof is similar to the one with PRGs. Given two sequences $\overline{m}_0, \overline{m}_1$ of messages, we have the distributions Real_0 and Real_1 of encryptions these two sequences. We define Ideal_0 and Ideal_1 but where a truly random function f is used.

The only way to distinguish Ideal_0 from Ideal_1 is if the same r is chosen twice (otherwise it is just like independent one-time pads), which happens with probability at most $\leq \left(\frac{q(n)}{2}\right) / 2^{\ell(n)} = \text{neg}(n)$.

Real_1 is indistinguishable from Ideal_1 by pseudorandomness of PRF. \qed

5 Constructing PRFs
• Let G be a length-doubling pseudorandom generator. Write $G(x) = G_0(x)G_1(x)$, where $\|G_0(x)\| = \|G_1(x)\| = \|x\|$.
• Define \mathcal{F} by $f_k(x_1 \cdots x_n) = G_{x_n}(G_{x_{n-1}}(\cdots G_{x_1}(k)))$.
 – Think of this as binary tree of depth n with root labelled k. If a node has label x, left child is labelled $G_0(x)$, right child is labelled $G_1(x)$. Labels at leaves are values of PRF.
• Theorem 5 If G is a PRG, the \mathcal{F} is a family of pseudorandom functions.

 Proof: Hybrid argument over levels of tree. For details, see Katz–Lindell. \qed

6 Security Against Active Attacks
• Chosen-plaintext attacks: adversary can (adaptively) request encryptions of messages of its choice.
• **Definition 6 (indistinguishability under chosen-plaintext attack)** Let \((G, E, D)\) be an encryption scheme over \(\mathcal{P} = \bigcup_n \mathcal{P}_n\). \((G, E, D)\) satisfies indistinguishability under chosen-plaintext attack if for every (nonuniform) PPT \(A\), there is a negligible function \(\varepsilon\) such that the probability that \(A\) outputs 1 in Experiments 0 and 1 differ by at most \(\varepsilon(n)\), where Experiment \(i\) is defined as follows:

1. \(k \leftarrow R G(1^n)\).
2. Let \((m_0, m_1) \leftarrow R A^{E_k} (1^n)\).
3. Let \(c \leftarrow R E_k (m_i)\).
4. Run \(A^{E_k} (c)\).

Both \(E_k\) (if stateful) and \(A\) maintain state between various calls to them in the experiment.

• **Proposition 7** Indistinguishability under chosen-plaintext attack implies multiple-message indistinguishability (indeed, even multiple-message indistinguishability under chosen-plaintext attack).

• **Proposition 8** The two encryption schemes from earlier this lecture satisfy indistinguishability under chosen-plaintext attack. In particular, if one-way functions exist, then there are encryption schemes secure under chosen-plaintext attack.

• **Chosen-ciphertext attacks:** also give adversary access to a decryption oracle \(D_k(\cdot)\) which it can query at any point except the challenge ciphertext \(c\).

1. “Gold standard” for secure encryption.
2. Can also be achieved based on PRFs (and hence OWFs).