Problem 1. (Attacks on “Plain” Public-Key Schemes)

1. Suppose you see the encryption of messages \(m, m+1, \) and \(m+2 \) under plain RSA encryption with exponent 3. Show how to recover \(m \) in polynomial time.

2. Suppose Alice wants to invite 2 friends to a party and decides to encrypt the invitation \(m \) using plain Rabin encryption. Assume her friends use two different public keys, \(N_1, N_2 \). Show that if the uninvited Eve sees the 2 different encryptions sent to Alice’s friends, \(E_{N_1}(m), E_{N_2}(m) \), she can efficiently recover \(m \) and crash the party. (Hint: use the Chinese Remainder Theorem.)

3. Recall that, for efficiency reasons, public-key encryption schemes \((G^1, E^1, D^1)\) are often used in conjunction with a private-key encryption scheme \((G^2, E^2, D^2)\) to obtain a ‘hybrid encryption’ scheme that works as follows. The public and secret keys are generated as \((pk, sk) \leftarrow G^1(1^n)\), and \(E_{pk}(m) \) is defined as follows: Choose a random key \(k \leftarrow G^2(1^n)\), let \(c^1 \leftarrow E^1_{pk}(k) \), let \(c^2 \leftarrow E^2_k(m) \), and output \((c^1, c^2)\). (The gain in efficiency is because typically \(|m| \gg |k|\) and \(E^2 \) is more efficient than \(E^1 \).) In KL §9.4, it is shown that if both initial schemes have indistinguishable encryptions, then so does the hybrid scheme. Show that the hybrid encryption scheme is not necessarily secure if we use a plain trapdoor permutation for the public-key scheme. That is, show how to modify any collection of trapdoor permutations and secure private-key encryption scheme so that when “hybridized,” the result is completely insecure.

4. Explain why such attacks could not work if we used public-key encryption schemes that have indistinguishable encryptions (i.e. are semantically secure).

Problem 2. (Paillier Encryption) Assume Alice is using a Paillier encryption scheme as described in class, where an encryption of a message \(m \) with random help value \(r \) is \(E_N(m, r) = (1 + N)^m r^N \mod N^2 \), using her public Paillier key \(N \).

1. We showed in class that Alice can prove to a third party that \(c_1 = E_N(m, r_1) \) and \(c_2 = E_N(m, r_2) \) are encryptions of the same value \(m \) without revealing any information about \(m \) by calculating \(c_1/c_2 \mod N^2 = E_N(m - m = 0, r_1/r_2 \mod N^2) \) and revealing the random help value \(r = r_1/r_2 \mod N^2 \). (The third party verifies \(c_1/c_2 \equiv (r_1/r_2)^{N} \mod N^2 \).)
Assuming the Decisional Composite Residuosity Assumption, prove that this method indeed yields no information about m to a polynomial-time adversary. That is, show that for every $m, m' \in \mathbb{Z}_N$

$$(E_N(m, R_1), E_N(m, R_2), R_1/R_2) \not\equiv (E_N(m', R_1), E_N(m', R_2), R_1/R_2).$$

2. We also showed in class how Alice can prove, given public ciphertexts $c_1 = E_N(m_1, r_1)$ and $c_2 = E_N(m_2, r_2)$, that $m_1 \geq m_2$ without revealing any additional information about m_1 or m_2 (except an upper bound 2^t on their values). Show how Alice, given c_1 and c_2, can prove the strict inequality $m_1 > m_2$. (Hint: reduce proving a strict inequality to proving a weak inequality using the homomorphic properties of Paillier encryption.)

Problem 3. (Variants of CBC-MAC) Recall that for a pseudorandom function family $F_n = \{f_k : \{0,1\}^n \rightarrow \{0,1\}^n\}$, the CBC-MAC is defined to be

$$M_k(m) = f_k(m_\ell \oplus f_k(m_{\ell-1} \oplus \cdots f_k(m_2 \oplus f_k(m_1)))),$$

where $m_1m_2\cdots m_\ell$ is a partition of m into blocks of length n. It is shown in Katz–Lindell that this MAC is secure for message space $\{0,1\}^{\ell n}$, for any fixed value of ℓ.

1. Note that, unlike the CBC Encryption Mode for block ciphers, we do not output the intermediate pseudorandom function values $f_k(m_1), f_k(m_2 \oplus f_k(m_1)), \ldots$. Show that if we did so, the resulting MAC would be insecure.

2. Extra credit: In class, we saw a general method for transforming a secure MAC for short messages into a secure MAC for long messages. It is natural to ask whether the CBC construction can be used instead. That is, if $F_n = \{f_k : \{0,1\}^n \rightarrow \{0,1\}^n\}$ is any secure MAC for message space $\{0,1\}^n$ (without necessarily being a pseudorandom function family), does it follow that CBC-MAC constructed using F_n is a secure MAC for message space $\{0,1\}^{\ell n}$? Show that the answer is no, i.e. there are secure MACs F_n for which the resulting CBC-MAC is insecure.