Computational Number Theory

1 Modular arithmetic: \mathbb{Z}_N and \mathbb{Z}_N^*

Basic definitions:

- $x \equiv y \pmod{N}$ if $N|(x - y)$. (Written $x = y \mod N$ in Katz–Lindell.)
- $[x \mod N] \overset{\text{def}}{=} \text{unique } x' \in \{0, \ldots, N-1\} \text{ s.t. } x \equiv x' \pmod{N}$.
- $\mathbb{Z}_N \overset{\text{def}}{=} \{0, \ldots, N-1\}$ with arithmetic ($+, \cdot$) modulo N.

 We cannot divide in general: $5 \cdot 8 \equiv 5 \cdot 1 \pmod{35}$.

Fact 1 (Extended Euclidean Algorithm) For any $x, y \in \mathbb{N}$ there exists two integers a, b such that $ax + by = \gcd(x, y)$. Moreover, such a and b can be found in polynomial time.

Definition of \mathbb{Z}_N^*

$$\mathbb{Z}_N^* \overset{\text{def}}{=} \{x \in \mathbb{Z}_N : \gcd(x, N) = 1\} = \text{elements of } \mathbb{Z}_N \text{ with multiplicative inverses}$$

By a multiplicative inverse for x we mean an element $y \in \mathbb{Z}_N$, denoted $y = x^{-1}$, such that $x \cdot y \equiv 1 \pmod{N}$. Given N and $x \in \mathbb{Z}_N^*$, we can compute x^{-1} in polynomial time:

Example: In \mathbb{Z}_{35}^*, $3^{-1} = \ldots$

Euler phi function

$$\phi(N) \overset{\text{def}}{=} |\mathbb{Z}_N^*|$$

Example:

- $\mathbb{Z}_{35}^* =$
- $\phi(35) =$
Q: how to generate random elements of \mathbb{Z}^*_N?

Fact 2

$$\phi(N) = N \cdot \prod_{\text{primes } p|N} \left(1 - \frac{1}{p}\right) \geq \frac{N}{6 \log \log N}$$

2 Groups

- An *abelian group* G is a set G with binary operation \ast satisfying associativity, identity, inverses, and commutativity.
 - **Examples**: \mathbb{Z}_N under addition, \mathbb{Z}_N^* under multiplication.

- **Fact**: In any group G, $x \ast x \ast \cdots \ast x \equiv \text{id} \mod |G|$ for all $x \in G$.
 - **Examples:**

- **Corollary**: $\forall x \in \mathbb{Z}_N^*, x^{\phi(N)} \equiv 1 \mod N$.
 - **Example**: $[2^{24} \mod 35] = 3$

3 \mathbb{Z}_p when p prime

- $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ (because $\phi(p) = p - 1$) and thus \mathbb{Z}_p is called a *field*.

- **Fermat’s Little Theorem**: For every $a \in \mathbb{Z}_p^*$, $a^{p-1} \equiv 1 \mod p$.

- A polynomial of degree d has at most d solutions mod p.

- For every prime p, there is a $g \in \mathbb{Z}_p^*$ such that $\{1 \mod p, g \mod p, g^2 \mod p, g^3 \mod p, \ldots, g^{p-2} \mod p\} = \mathbb{Z}_p^*$. Such a g is called a *generator* of \mathbb{Z}_p^*.
 - **Example**: \mathbb{Z}_{11}^*

- **Fact 3** We can generate random n-bit prime p together with a (random) generator of \mathbb{Z}_p^* time $\text{poly}(n)$.

- **Discrete logarithms**: For $x \in \mathbb{Z}_p^*$, $\log_g x \overset{\text{def}}{=} \{\text{unique } i \in \{0, \ldots, p - 2\} \text{ s.t. } g^i \equiv x \mod p\}$. Computing the discrete logarithm is believed to be hard, even if p and g are known.

4 Chinese Remainder Theorem

Fact 4 (Chinese Remainder Theorem) Let $N = pq$ with $\gcd(p, q) = 1$. Then the map $x \mapsto (x \mod p, x \mod q)$ from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$ is one-to-one and onto. In particular, for every $(y, z) \in \mathbb{Z}_p \times \mathbb{Z}_q$, there exists a unique $x \in \mathbb{Z}_N$ s.t. $x \equiv y \mod p$ and $x \equiv z \mod q$. Moreover, x can be found in polynomial time given (y, z, p, q).
Proof sketch: What is the inverse map?

Example: $Z_{35} \leftrightarrow Z_5 \times Z_{15}$

Using the Chinese Remainder Theorem, an arithmetic question modulo N can be reduced to an arithmetic problem modulo p and modulo q, provided we know the factorization of N.

5 Quadratic Residues

We define $\text{QR}_N \overset{\text{def}}{=} \{ x^2 \mod N : x \in Z_N^* \}$.

Proposition 5 When p odd prime, $|\text{QR}_p| = |Z_p^*|/2 = (p - 1)/2$.

Proof: Consider the map from $Z_p^* \rightarrow Z_p^*$, given by $x \mapsto x^2$. A square in Z_p^* has at least two square roots because $a^2 \equiv (-a)^2 \mod p$ and $a \neq -a \mod p$ as p is odd. A square in Z_p^* has at most two square roots: Z_p is a field so a polynomial of degree d has at most d roots modulo p. We consider the polynomial $x^2 - c \equiv 0 (\mod p)$: for any c, the polynomial has at most two roots in Z_p. The map is hence exactly 2 to 1.

Proposition 6 When $N = pq$ for odd primes p, q, $|\text{QR}_N| = |Z_N^*|/4$ and $x \mapsto x^2$ is 4-to-1 on Z_N^*.

Proof: Let us prove that $s \in \text{QR}_N \iff (s \mod p \in \text{QR}_p)$ and $(s \mod q \in \text{QR}_q)$.

The map $x \mapsto x^2$ is 4-to-1 on Z_N^*.

$$|\text{QR}_N| = |Z_N^*|/4 = \frac{(p - 1)}{2} \cdot \frac{(q - 1)}{2}$$

Example: elements of QR_{35}