CS208: Applied Privacy for Data Science
Foundations of Differential Privacy (cont.)

James Honaker & Salil Vadhan
School of Engineering & Applied Sciences
Harvard University

February 25, 2019
Goals of Differential Privacy

• **Utility**: enable “statistical analysis” of datasets
 – e.g. inference about population, ML training, useful descriptive statistics

• **Privacy**: protect individual-level data
 – against “all” attack strategies, auxiliary info.
DP for one query/release

[Dwork-McSherry-Nissim-Smith ’06]

<table>
<thead>
<tr>
<th>Sex</th>
<th>Blood</th>
<th>HIV?</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>B</td>
<td>Y</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>M</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>O</td>
<td>Y</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>B</td>
<td>Y</td>
</tr>
</tbody>
</table>

Def: M is ε-DP if for all D, D' differing on one row, and all q

\forall sets T, $\Pr[M(D,q) \in T] \leq e^{\varepsilon} \cdot \Pr[M(D',q) \in T]$

(Probabilities are (only) over the randomness of M.)
The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith ’06]

• Let \mathcal{X} be a data universe, and \mathcal{X}^n a space of datasets. (For now, we are treating n as known and public.)
• For $x, x' \in \mathcal{X}^n$, write $x \sim x'$ if x and x' differ on at one row.
• For a query $q : \mathcal{X}^n \to \mathbb{R}$, the global sensitivity is
 \[GS_q = \max_{x \sim x'} |q(x) - q(x')| \, . \]
• The Laplace distribution with scale s, $\text{Lap}(s)$:
 – Has density function $f(y) = e^{-|y|/s}/2s$.
 – Mean 0, standard deviation $\sqrt{2} \cdot s$.

Theorem: $M(x, q) = q(x) + \text{Lap}(GS_q/\varepsilon)$ is ε-DP.
Calculating Global Sensitivity

1. \(x = \{0,1\}, q(x) = \sum_{i=1}^{n} x_i, GS_q = 1. \)

2. \(x = \mathbb{R}, q(x) = \sum_{i=1}^{n} x_i, GS_q = \infty. \) (useless)

3. \(x = [0,1], q(x) = \text{mean}(x_1, x_2, \ldots, x_n), GS_q = 1/n. \)

4. \(x = [0,1], q(x) = \text{median}(x_1, x_2, \ldots, x_n), GS_q = 1. \) (useless)

5. \(x = [0,1], q(x) = \text{variance}(x_1, x_2, \ldots, x_n), GS_q < 1/n. \)
Proof that the Laplace Mechanism is Differentially Private
Real Numbers Aren’t

[Mironov `12]

• Digital computers don’t manipulate actual real numbers.
 – Floating-point implementations of the Laplace mechanism can have \(M(x, q) \) and \(M(x', q) \) disjoint \(\rightarrow \) privacy violation!

• Solutions:
 – Round outputs of \(M \) to a discrete value (with care).
 – Or use the Geometric Mechanism:
 • Ensure that \(q(x) \) is always an integer multiple of \(g \).
 • Define \(M(x, q) = q(x) + g \cdot \text{Geo}(GS_q/g\epsilon) \), where
 \[
 \Pr[\text{Geo}(s) = k] \propto e^{-|k|/s} \text{ for } k \in \mathbb{Z}.
 \]
Properties of the Definition

• **Suffices to check pointwise:** M is ϵ-DP if and only if
 \[
 \forall x \sim x', \forall q, \forall t \Pr[M(x, q) = t] \leq e^\epsilon \cdot \Pr[M(x', q) = t]
 \]

• **Closed under post-processing:** if M is ϵ-DP and f is any function,
 then $M'(x, q) = f(M(x, q))$ is also ϵ-DP.

• **(Basic) composition:** If M_i is ϵ_i-DP for $i = 1, \ldots, k$, then
 \[
 M(x, (q_1, \ldots, q_k)) = (M_1(x, q_1), \ldots, M_k(x, q_k))
 \]
 is $(\epsilon_1 + \cdots + \epsilon_k)$-DP.

 – Use independent randomness for k queries.

 – Holds even if q_i's are adaptively chosen by an adversary.

Replace with densities for continuous distributions
Composition & Privacy Budgeting

<table>
<thead>
<tr>
<th>Sex</th>
<th>Blood</th>
<th>...</th>
<th>HIV?</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>B</td>
<td>⋮</td>
<td>Y</td>
</tr>
<tr>
<td>M</td>
<td>A</td>
<td>⋮</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>O</td>
<td>⋮</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>O</td>
<td>⋮</td>
<td>Y</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>⋮</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>B</td>
<td>⋮</td>
<td>Y</td>
</tr>
</tbody>
</table>

Thm: If M is ε-DP if for one query, then it is $k\varepsilon$-DP for k queries.

- To maintain global privacy loss at most ε_g, can set $\varepsilon = \frac{\varepsilon_g}{k}$ and stop answering after k queries.
- More queries \Rightarrow Smaller ε \Rightarrow Less accuracy. Some query-accuracy tradeoff is necessary! (why?)
Composition for Algorithm Design

Composition and post-processing allow designing more complex differentially private algorithms from simpler ones.

Example:

• Many machine learning algorithms (e.g. stochastic gradient descent) can be described as sequence of low-sensitivity queries (e.g. averages) over the dataset, and can tolerate noisy answers to the queries. (The “Statistical Query Model.”)
• Can answer each query by adding Laplace noise.
• By composition and post-processing, trained model is DP and safe to output.
Interpreting the Definition

Def: M is ε-DP if for all D, D' differing on one row, and all q

$$\forall \text{ sets } T, \quad \Pr[M(D,q) \in T] \leq e^\varepsilon \cdot \Pr[M(D',q) \in T]$$

(Probabilities are (only) over the randomness of M.)
Interpreting the Definition

• Whatever an adversary learns about me, it could have learned from everyone else’s data.
• Mechanism cannot leak “individual-specific” information.
• Above interpretations hold regardless of adversary’s auxiliary information or computational power.

But:
• No guarantee that adversary won’t infer sensitive attributes.
• No guarantee that subjects won’t be “harmed” by results of analysis.
• No protection for information that is not localized to a few rows.
Group Privacy & Setting ε

- **Thm:** If M is ε-DP if for one query, then it is $k\varepsilon$-DP for k groups of size k: for all x, x' that differ on at most k rows,
 \[\forall q \forall T \Pr[M(x, q) \in T] \leq e^{k\varepsilon} \cdot \Pr[M(x', q) \in T] \]
 – Meaningful privacy for groups of size $O(1/\varepsilon)$.

- **Cor:** Need $n \geq 1/\varepsilon$ for any reasonable utility.

- Typical recommendation for “good” privacy guarantee: $0.01 \leq \varepsilon \leq 1$.
A Bayesian Interpretation

- Let $X = (X_1, \ldots, X_n) \in \mathcal{X}^n$ be a random variable distributed according to an adversary’s “prior beliefs” about a dataset, and let $X_{-i} = (X_1, \ldots, X_{i-1}, \perp, X_i, \ldots, X_n)$ have person i’s data removed or replaced with a dummy value in \mathcal{X}.

- Suppose $M : \mathcal{X}^n \rightarrow \mathcal{Y}$ is ε-DP, and let $y \in \mathcal{Y}$ be any possible output. Then for every $x_i \in \mathcal{X}$,

$$\Pr[X_i = x_i | M(X) = y] \in e^{\pm \varepsilon} \cdot \Pr[X_i = x_i | M(X_{-i}) = y]$$

 - Posterior belief about person i after seeing output y
 - Posterior belief about person i after seeing output y if person i’s data wasn’t used

- Explains choice of multiplicative distance in def of DP.
Variants of the Definition

• When n is not publicly known:
 – **Datasets**: multisets D of elements of \mathcal{X}, can represent as a histogram $D \in \mathbb{N}^\mathcal{X}$, where $D_x =$ number of copies of x.
 – **Neighbors**: $D \sim D'$ iff $|D \Delta D'| = 1$ (add or remove an elt)

In histogram notation: $|D \Delta D'| = \sum_x |D_x - D'_x| \equiv \|D - D'\|_1$

• Social network data:
 – **Datasets**: graphs G, possibly with labels on nodes and edges
 – **Neighbors v1**: $G \sim G'$ if differ by modifying one edge
 – **Neighbors v2**: $G \sim G'$ if differ by modifying one node & incident edges.

 – **Q**: which choice provides better privacy protection?
Approximate Differential Privacy

Def: M is (ε, δ)-DP if for all $D \sim D'$, and all q

$$\forall \text{ sets } T, \quad \Pr[M(D, q) \in T] \leq e^{\varepsilon} \cdot \Pr[M(D', q) \in T] + \delta$$

- Intuitively: ε-DP with probability at least $1 - \delta$.
- Picking a random person from dataset and publishing their data is $(0, 1/n)$-DP, so want $\delta \ll 1/n$.
- Ideally set δ to be cryptographically small (e.g. 2^{-50}).
- Satisfies postprocessing, basic composition (adding δ_i's).
- Group privacy for groups of size up to $O(1/\varepsilon)$.
- Does not suffice to check pointwise (need to consider sets T).
Benefits of Approximate DP

• More mechanisms, e.g. Gaussian Mechanism:
 \[M(x, q) = q(x) + \mathcal{N}(0, \sigma^2), \]
 for \(\sigma = \frac{GS_q}{\varepsilon} \cdot \sqrt{2 \ln(2/\delta)} \)

• Advanced Composition Thm: If \(M_i \) is \((\varepsilon, \delta)\)-DP for \(i = 1, \ldots, k \) and \(k < 1/\varepsilon^2 \), then \(\forall \delta > 0 \)
 \[M(x, (q_1, \ldots, q_k)) = (M_1(x, q_1), \ldots, M_k(x, q_k)) \]
 is \((\varepsilon', k \cdot \delta + \delta')\) -DP, for
 \[\varepsilon' = O \left(\varepsilon \cdot \sqrt{k \cdot \log(1/\delta')} \right). \]