CS208: Applied Privacy for Data Science
Conclusions

James Honaker & Salil Vadhan
School of Engineering & Applied Sciences
Harvard University

April 29, 2019
Privacy Risks

• Deidentified data can often be reidentified.

• Naïve query systems are subject to differencing-style attacks.

• Releasing too many aggregate statistics allows for reconstruction or membership attacks (Census, Diffix).

• Machine learning models can memorize their data and allow for membership attacks (Shokri et al., Google translate).
Definition of Differential Privacy

• Strong privacy definition.
• Compatible with many statistical analyses.
• Ensures that “individual-level information” does not leak.
• Applies regardless of adversary’s auxiliary information.
• Adversary can be external “analysts” (centralized DP) or aggregator (local DP).

But:
• Adversary may still infer sensitive attributes.
• Not applicable when utility requires individual-level data.
• “Privacy” has many other meanings beyond what is captured by DP (cf. Solove taxonomy).
Composition of DP

- DP and variants (pure, approximate, zCDP, moments accountant) satisfy composition thms.
- Allows for modular design of DP algorithms (w/post-processing).
- Leads to tradeoff of # queries vs. accuracy (vs. privacy)

Tradeoff is worse in local model.
DP Algorithms & Tools We’ve Seen

- Means
- Medians/Quantiles/Ranges
- Histograms
- Regression
- Synthetic Data Generation
- Empirical Risk Minimization
- Deep Learning/SGD
- Subgraph Counts
- Degree Distribution

- εktelo
- PSI
- RAPPOR
- Tensorflow privacy

There are many more!
Core Components

A small number of primitives form the building blocks of some of the most complicated models, including:

• Clipping/Clamping
• Laplace (and Gaussian) Mechanisms
• Exponential Mechanism
• Randomized Response
• Composition
• Binning, One-hot encoding

As well as some core recurring ideas:

• Post-processing
• Lipschitz transformations
• Subsampling
Experimental Investigation

Monte Carlo simulation methods are a valuable tool for investigating utility and other performance measures of algorithms. We have used this underlying template repeatedly:

1. Simulate data from distribution with known properties (or bootstrap from large dataset as if a population).
2. Release DP estimate and compare to true estimand.
3. Repeat 1 & 2 to integrate over simulation error and summarize.
4. Repeat 3 over free parameters of interest.
Value of Rigorous Thinking in Privacy & Security

• Break cycle of attack-defense-attack-defense-...

• Separates goal from solutions.
 – Can evaluate privacy/security definition on its own.
 – Opens design space for solutions.

• Makes assumptions about adversary and implementation explicit, evaluable.

• Allows for study of tradeoffs (e.g. privacy vs. utility) and limits (impossibility, hardness).
Deployments of DP
Census, Opportunity Atlas, Google, Apple, Uber, Privitar, Leapyear, ...

Challenges and Open Problems:
• Getting both sufficient utility and satisfactory privacy.
• Managing privacy budget over many queries and analysts.
• Compatibility with existing data science workflows.
• Practical methods for generating synthetic data.
• Enabling analysts to interpret noise, perform inference, measure uncertainty.
• Bridging with law & policy.
• Relational data (joins).
• Side channel attacks (e.g. randomness, timing).
• Vetted and general-purpose software tools.
To Pursue Further at Harvard

• Some final projects may lead to publishable papers.

• Join the Privacy Tools Project
 – Email Louisa Bloomstein lbloomstein@seas.harvard.edu and cc us to join mailing lists for regular meetings.
 – Apply for summer or term-time internship or developer position https://privacytools.seas.harvard.edu/participate/positions
 – Probably coming soon: “OpenDP project”

• Explore annotated bibliography.

• Come discuss with us in office hours.

• Take Cynthia Dwork’s CS227r next year for more theory of DP and related topics (e.g. preventing overfitting, algorithmic fairness).
To Pursue Further Elsewhere

• Apply for a job as a privacy engineer/data scientist/researcher.
 – Big & small tech companies
 – Privacy start-ups
 – Government agencies
 – Privacy non-profits and advocacy organizations
 – Industries grappling with data privacy (healthcare, finance, …)

• Apply to graduate programs at places doing DP
 (we’re happy to provide advice).