Implementations of Local DP

Telemetry=“automated communications process by which measurements and other data are collected at remote or inaccessible points and transmitted to receiving equipment for monitoring” [https://en.wikipedia.org/wiki/Telemetry]

- Google RAPPOR (2014, Chrome Browser)
 - Collecting billions of reports per day, software monitoring
 - What features being used, failure & performance stats, default search engine (could be set by malware), etc.

- Apple “Learning with Privacy” (2016, iOS 10, Mac OS Sierra)

- Microsoft “Collecting Telemetry Data Privately” (2017, Windows Insiders in Windows 10 Fall Creators Update)
 - App usage statistics
Local DP

Require: for all i, x_i, x'_i differing on one row, all strategies A

$$\Pr[A \text{ outputs YES after interacting w/ } Q_i(x_i)] \leq e^\varepsilon \cdot \Pr[A \text{ outputs YES after interacting w/ } Q_i(x'_i)] + \delta$$
Recap: DP histograms

- Local randomizer $Q(x_i)$ for $x_i \in \{1, \ldots, D\}$

1. Construct “1-hot” vector $e_{x_i} = (0,0,\ldots,0,1,0,\ldots,0) \in \{0,1\}^D$.
2. Apply $(\varepsilon/2)$-DP RR to each coordinate to get $y_i \in \{0,1\}^D$:

 $y_i[j] = \begin{cases}
 e_{x_i}[j] & \text{w.p. } e^{\varepsilon/2}/(1 + e^{\varepsilon/2}) \\
 1 - e_{x_i}[j] & \text{o.w.}
 \end{cases}$

3. Send y_i to server.

- Server uses (y_1, \ldots, y_n) to estimate histogram $f = \sum_i e_{x_i}$.

- Error per bin $O(\sqrt{n}/\varepsilon)$.

Q: challenges in applying this to telemetry applications?
Handling large domains

• Server chooses random hash func. \(h : \{1, \ldots, D\} \to \{1, \ldots, m\} \), for \(m \ll D \), sends \(h \) to all users.

• Use RR protocol to obtain approximate histogram \(\hat{f} \in \mathbb{Z}^m \) of \(h(x_i) \)'s.

• For a value \(v \in \{1, \ldots, D\} \), estimate the frequency of \(v \) as:
 \[
 \frac{m \cdot \hat{f}[h(v)] - n}{m - 1}
 \]

• Claim: this is an unbiased estimator
Reducing the Variance

1. Randomly partition users into k cohorts, each using a different hash function h_j, sum estimators over the cohorts.
 - Used by Google and Apple.

2. Use ℓ hash functions per cohort.
 - Used by Google, inspired by Bloom Filters.
 - Now applying RR to a 2ℓ-hot vector.
 - Experiments show that 2 hash functions per user does best on precision and recall, but doesn’t compare to just 1.
Inference on the Reports (Google)

• For simplicity, assume one hash function per cohort.
• Histogram of cohort j’s hashed values: $f_j = \sum_{i \in C_j} e_{h_j(x_i)} \in \mathbb{N}^m$.
• From noisy reports, estimate histogram \hat{f}_j.

To estimate frequencies for a given $v_1, ..., v_s \in \{1, ..., D\}$:

• Construct $m \times s$ matrices $M_j[a, b] = \begin{cases} 1 & \text{if } h_j(v_a) = b \\ 0 & \text{o. w.} \end{cases}$
• Use LASSO regression to find a sparse $\hat{F} \in \mathbb{N}^s$ such that

$$\begin{pmatrix} M_1 \\ \vdots \\ M_k \end{pmatrix} \hat{F} \approx k \cdot \begin{pmatrix} \hat{f}_1 \\ \vdots \\ \hat{f}_k \end{pmatrix}$$

• Do another OLS regression on nonzero coordinates of \hat{F} to re-estimate coeffs, plus std errors, p values (with correction for false discovery)
Discovering Unknown Values (Apple)

- Method described so far requires server to decide on a small set values v_1, \ldots, v_s to estimate frequencies of.

- **Goal:** find unanticipated frequent values v

- **Idea:** reconstruct v one symbol at a time
 - do RR on $h(x_i) || x_i[j]$ for each bitposition $j = 1, \ldots, \log D$.
 - $\hat{f}[w || \sigma_j]$ is large \Rightarrow there probably is a frequently occurring value $v \in \{1, \ldots, D\}$ such that $h(v) = w$ and $v[j] = \sigma_j$.
 - $\hat{f}[w || \sigma_1], \ldots, \hat{f}[w || \sigma_{\log D}]$ large $\Rightarrow v = \sigma_1 \cdots \sigma_{\log D}$
Controlling Privacy Loss Over Time

- **Hope**: lower privacy loss if value not changing often (e.g. stated gender, default search engine)

- **Memoization (Google)**: Two-level RR
 - ε_1-DP “permanent RR”: output reused until x_i changes
 - ε_2-DP “instantaneous RR”: applied to permanent RR output every time

[Erlingsson, Pihur, Korolova 2014]
Controlling Privacy Loss over Time (cont.)

• Memoization for continuous values ν (Microsoft):
 – Round value to a randomly shifted grid.
 – Small changes in ν unlikely to change rounded value.
 – Rounded value is unbiased estimator of ν.

• Anonymity (Apple):
 – Do not track which reports came from which users.
 – Recent work shows that this amplifies privacy.
Utility

- RAPPOR rule-of-thumb: to detect items that have frequency $p \in [0,1]$, need a sample size $n \gtrsim 10/p^2$.
 - For $p = .01$, need $n \gtrsim 100,000$.

- Found from > 8500 candidate domains
- Account for 85% of all users’ homepages

[Erlingsson, Pihur, Korolova 2014]
Critiques

• Apple (and Microsoft?) have not open-sourced code or specified their privacy loss parameters.

• Tang et al. [2017] reverse-engineering Apple’s use of DP:
 – Privacy loss per report: $\varepsilon = 1$ or 2.
 – Max privacy loss per day over 4 types of reports: $\varepsilon = 14$
 – Privacy loss over multiple days: unbounded

• Google collects lots of user data without DP.

• Google phasing out RAPPOR due to poor accuracy.
 – Switching to Prochlo, using anonymity to boost local DP. [Bittau et al. 2017]
Some Responses

• Formally reasoning about privacy loss in these settings is progress.

• Limitations and heuristic patches inspire theoretical work:
 – New algorithms that ensure local DP even over long time, and give utility if value doesn’t change too much too often. [Joseph et al. 2018]