Motivation

- **Last time:** on a dataset with n individuals, releasing $m = n$ counts with error $E = o(\sqrt{n})$ allows for reconstructing $1 - o(1)$ fraction of sensitive attributes.

- **Q:** what happens if we allow error $\Omega(\sqrt{n}) \leq E \leq o(n)$?

- **A (today):** if we release $m = n^2$ counts, can be vulnerable to “membership attacks”.
What is this \sqrt{n} threshold?

- If $X = X_1 + \cdots + X_n$ for independent random variables X_i each with standard deviation σ, then the standard deviation of X is $\sigma \cdot \sqrt{n}$.
- So the “sampling error” for a sum is typically $\Theta(\sqrt{n})$.
- If the X_i’s are bounded (or “subgaussian”), then X will have Gaussian-like concentration around its mean μ:
 \[\Pr[|X - \mu| > t \cdot \sqrt{n}] \leq e^{-\Omega(t^2)} \] [Chernoff-Hoeffding Bound]
Normalized Counts (i.e. Averages)

- If \(X = (X_1 + \cdots + X_n)/n \) for independent random variables \(X_i \) each with standard deviation \(\sigma \), then the standard deviation of \(X \) is \(\sigma/\sqrt{n} \).
- So the “sampling error” for a sum is typically \(\Theta(1/\sqrt{n}) \).
- If the \(X_i \)'s are bounded (or “subgaussian”), then \(X \) will have Gaussian-like concentration around its mean \(\mu \):
 \[
 \Pr[|X - \mu| > t/\sqrt{n}] \leq e^{-\Omega(t^2)} \quad \text{[Chernoff-Hoeffding Bound]}
 \]

This is why subsampling \(k \) out of \(n \) rows allows us to approximate \(m \) averages each to within \(\pm O \left(\left(\frac{1}{\sqrt{k}} \right) \cdot \sqrt{\log m} \right) \)
Motivation

- **Last time:** on a dataset with n individuals, releasing $m = n$ averages with error $E = o\left(\frac{1}{\sqrt{n}}\right)$ allows for reconstructing $1 - o(1)$ fraction of sensitive attributes.

- **Q:** what happens if we allow error $\Omega\left(\frac{1}{\sqrt{n}}\right) \leq E \leq o(1)$?

- **A (today):** if we release $m = n^2$ counts, can be vulnerable to “membership attacks”.
Membership Attacks: Setup

Attacker gets:
- Access to mechanism outputs
- Alice’s data
- (Possibly) auxiliary info about population

Then decides: if Alice is in the dataset X

[slide based on one from Adam Smith]
Membership Attacks: Examples

- Genome-wide Association Studies [Homer et al. `08]
 - release frequencies of SNP’s (individual positions)
 - determine whether Alice is in “case group” [w/a particular diagnosis]
- ML as a service [Shokri et al. `17]
 - apply models trained on X to Alice’s data

[slide based on one from Adam Smith]
Membership Attacks from Means

Data Table

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Attributes/Predicates

- \(d \) attributes/predicates

Population

0.5 0.75 0.5 0.5 0.75 0.5 0.25 0.25 0.5

Alice’s Data

0 1 0 1 1 1 1 0 1 0

Attacker

0.5 0.75 0.5 0.75 0.5 0.25 0.25 0.5

“In”/“Out”

[slide based on one from Adam Smith]
Membership Attacks from Means

- Population = [vector $p = (p_1, \ldots, p_d)$ of probabilities]
 - j’th attribute = iid Bernoulli(p_j), independent across j
 - Adversary gets p (or a few random draws) given to adversary

[slide based on one from Adam Smith]
• Population = vector \(p = (p_1, \ldots, p_d) \) of probabilities
 – \(j \)'th attribute = iid Bernoulli(\(p_j \)), independent across \(j \)
 – Adversary gets \(a \approx \bar{x} \) and \(p \) (or a few random draws)
 – Only assume that \(a = M(x) \) has \(|a_j - \bar{x}_j| \leq \alpha \) whp.
 (“Noise” need not be independent or unbiased.)

[slide based on one from Adam Smith]
We are interested in $\alpha > 1/\sqrt{n}$.
In this regime, if p known to mechanism, can prevent attack. (Q: Why?)
So we will assume random p_j's (e.g. iid uniform in $[0,1]$).
Theorem [Dwork et al. `15]: There is a constant c and an attacker A such that when $d \geq cn$ and $\alpha < \min \left\{ \sqrt{d/O(n^2 \log(1/\delta))}, 1/2 \right\}$:

- If Alice is IN, then $\Pr[A(y, a, p) = \text{IN}] \geq \Omega \left(\frac{1}{\alpha^2 n} \right)$.
- If Alice is OUT, then $\Pr[A(y, a, p) = \text{IN}] \leq \delta$.

[slide based on one from Adam Smith]
Theorem [Dwork et al. `15]: There is an attacker A such that when $d \geq O(n)$ and $\alpha < \min \left\{ \sqrt{d/\Theta(n^2 \log(1/\delta))}, 1/2 \right\}$:

- If Alice is IN, then $\Pr[A(y, a, p) = \text{IN}] \geq \Omega \left(\frac{1}{\alpha^2 n} \right)$. (true positive)
- If Alice is OUT, then $\Pr[A(y, a, p) = \text{IN}] \leq \delta$. (false positive)

Remarks:

- Only interesting when $\delta < \Omega \left(\frac{1}{\alpha^2 n} \right)$.
- On average, successfully trace $\Omega \left(\frac{1}{\alpha^2} \right)$ members of dataset. This is the best possible. (Why?)
- Can safely release at most $\tilde{O}(n^2)$ means!
The Attacker

\[
A(y, a, p) = \begin{cases}
\text{IN} & \text{if } \langle y, a \rangle - \langle p, a \rangle > T \\
\text{OUT} & \text{if } \langle y, a \rangle - \langle p, a \rangle \leq T
\end{cases}
\]

Note: given \(p, a \), can choose \(T = T_{p,a} = \frac{1}{\sqrt{d \log(1/\delta)}} \) to make false positive probability exactly \(\delta \).

[slide based on one from Adam Smith]
Attacks on Aggregate Stats

- What error α makes sense?
 - Estimation error due to sampling $\approx 1/\sqrt{n}$
 - Reconstruction attacks require $\alpha \lesssim 1/\sqrt{n}$, $d \geq n$
 - Robust membership attacks: $\alpha \lesssim \sqrt{d}/n$

- Lessons
 - “Too many, too accurate” statistics reveal individual data
 - “Aggregate” is hard to pin down
Membership Attacks on ML as a Service

[Shokri et al. 2017]
Switch to slides from Reza Shokri’s talk
Another Attack on ML?

[Frederickson et al. `14, cf. McSherry `16]

n people

Data set X

Mechanism (stats, ML model, …)

Population

Alice’s (known) data

Attacker gets:

- Access to mechanism outputs
- Some of Alice’s data
- (Possibly) auxiliary info about population

Then computes: a sensitive attribute of Alice
Another Attack on ML?

[Frederickson et al. `14, cf. McSherry `16]

\[\text{Data set X} \]

Population

\[\text{Alice's (known) data} \]

\[\text{Mechanism (stats, ML model, ...)} \]

\[n \text{ people} \]

Difference from reconstruction attacks:

- Above attack works even if Alice not in dataset. Based on correlation between known & sensitive attributes.
- Reconstruction attacks work even when sensitive bit uncorrelated.
Goals of Differential Privacy

• **Utility:** enable “statistical analysis” of datasets
 – e.g. inference about population, ML training, useful descriptive statistics

• **Privacy:** protect individual-level data
 – against “all” attack strategies, auxiliary info.

Q: Can it help with privacy in microtargetted advertising? [Korolova attacks]
 – inference from impressions?
 – inference from clicks?
 – displaying intrusive ads?
Further Discussion

Reactions to the “Five Views” responses to membership attacks on genomic data?