CS208: Applied Privacy for Data Science
Implementing Differential Privacy:
Programming Interfaces for DP

James Honaker & Salil Vadhan
School of Engineering & Applied Sciences
Harvard University

March 4, 2019
Synthetic Data via DP Histograms

• Use singleton bins $B_y = \{y\}$ for each $y \in Y$.

• Construct a DP histogram $(a_1, \ldots, a_{|X|}) \leftarrow M_{\text{hist}}(x)$, where $a_y \approx \#\{i : x_i = y\}$.

• Output synthetic dataset \hat{X} with a_y copies of each element y.

Difficulties?

• a_y’s may not be nonnegative integers.
 – Soln 1: use Geometric Mechanism and clamp at 0.
 – Soln 2: use Exponential Mechanism with range $\{0, \ldots, n\}$.

• Poor utility & efficiency when X is large.

• Enforcing nonnegativity introduces problematic bias!
Census Bureau’s Use of DP

Excerpts from:

See also:

• John Abowd. “The U.S. Census Bureau Adopts Differential Privacy,” KDD 2018. [how to decide on privacy vs. accuracy]

• Dan Kifer. “Consistency with External Knowledge: The Top-Down Algorithm,” Simons Privacy workshop TODAY. [many algorithmic issues and choices]

• Aref Danjani. “The modernization of statistical disclosure limitation at the U.S. Census Bureau,” UNECE/EUROSTAT 2017. [challenges for other Census products]
Consistency & Optimization

- **Structural Zeroes**: Enforced by edit and imputation, DP can’t reintroduce it
 - Householder and spouse/partner must be at least 15 yrs old
 - Every household must have exactly one householder
 - At least one of the binary race flags must be 1
 - Etc.

- **Invariants**: public statistics with exact values
 - State population totals
 - Linear constraints: sum of county populations equals state population
 - Single-gender group quarters (dorms, prisons)

- **Optimizing accuracy**: for a set Q of queries
 - Use “matrix mechanism” to determine related set Q' of queries, apply Laplace mechanism to Q', then reconstruct synthetic data.
 - With constraints, NP-hard: use integer programming heuristics.

[LeClerc-Clark-Sexton `17, Kifer `19]
The Matrix Mechanism

[Li-Miklau-Hay-Rastogi `14]

- **Common Approach**: given “workload” $Q = (q_1, \ldots, q_k)$, find
 - A “query strategy” $Q' = (q_1', \ldots, q_\ell')$ that can be answered accurately with DP
 - A transformation B that maps accurate answers to Q' to accurate answers for Q.

- **Example**:
 - $Q =$ simple linear regression coefficient β
 - $Q' = (S_{xy}, S_{xx})$
 - $B(a_{xy}, a_{xx}) = a_{xy}/a_{xx}$.
The Matrix Mechanism
[Li-Miklau-Hay-Rastogi `14]

- **Matrix Mechanism**: restrict attention to the “linear” case:
 - Q, Q' are of form $q_j(x) = \sum_{i=1}^{n} f_j(x_i)$ for $f_j : \mathcal{X} \to \mathbb{R}$
 - B is a $\ell \times k$ matrix s.t.
 - for all $x \in \mathcal{X}^n$, $(q_1(x), ..., q_k(x)) = B \cdot (q_1'(x), ..., q_\ell'(x))$
 (or equivalently for f_j's).

- When answering Q' via Laplace or Gaussian mechanism, finding the Q' and B minimizing the MSE is a rank-constrained semidefinite program of size $k \times |\mathcal{X}|$.
Example: Range Queries

\(x = \{0, \ldots, D-1\}, \ Q = (q_{[a,b]})_{0 \leq a \leq b \leq D-1}, \) where

\[q_{[a,b]}(x) = \#\{i : a \leq x_i \leq b\} \]

1\(^{st}\) attempt: \(Q' = Q. \ B = I. \)

Changing one row of \(x \) can change \(\Omega(D^2) \) answers by \(\pm 1 \).
Laplace mechanism has std. dev. \(\Theta(D^2/\varepsilon) \) per query.

2\(^{nd}\) attempt: \(Q' = \) histogram queries \((q'_y)_{1 \leq y \leq D} \).

\(B: \ q_{[a,b]}(x) = \sum_{a \leq y \leq b} q'_y(x) \)

Laplace mechanism has std. dev \(\Theta(1/\varepsilon) \) per query in \(Q' \).
Std deviation for \(q_{[a,b]} = \)
The Hierarchical Strategy

[Hay-Rastogi-Miklau-Suciu `10]

• Assume $D = 2^d$, arrange elements of X in a binary tree, let $Q' = (q_{[a,b]})_{a,b}$ smallest and largest descendants of their common ancestor

• Changing one row changes at most $2d$ queries in Q', each by ± 1.

• Every range query in Q is a ± 1 linear combination of at most $2d$ queries in Q'.

• Standard deviation of error for queries in Q' is $O\left(\frac{d^{3/2}}{\varepsilon}\right)$.
Private Multiplicative Weights
[Blum-Ligett-Roth `08,...,Hardt-Rothblum `10]

\[(\varepsilon, \delta)-\text{DP} \ M: \mathcal{X}^n \rightarrow \mathcal{X}^m \text{ such that } \forall q \in Q, \ q: \mathcal{X} \rightarrow [0,1]\]

\[
\left| \frac{1}{n} \sum_{i=1}^{n} q(x_i) - \frac{1}{m} \sum_{i=1}^{m} q(M(x)_i) \right| \leq O \left(\frac{\sqrt{\log|\mathcal{X}| \cdot \log(1/\delta) \cdot \log|Q|}}{\varepsilon n} \right)^{1/2}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Sex} & \text{Blood} & \ldots & \text{HIV?} \\
\hline
F & B & \ldots & Y \\
M & A & \ldots & N \\
M & O & \ldots & N \\
M & O & \ldots & Y \\
F & A & \ldots & N \\
M & B & \ldots & Y \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Sex} & \text{Blood} & \ldots & \text{HIV?} \\
\hline
M & B & \ldots & N \\
F & B & \ldots & Y \\
M & O & \ldots & Y \\
F & A & \ldots & N \\
F & O & \ldots & N \\
\hline
\end{array}
\]
Private Multiplicative Weights

[Hardt-Rothblum `10]

\((\varepsilon, \delta)\)-DP \(M: \mathcal{X}^n \to \mathcal{X}^m\) such that \(\forall q \in Q, \ q: \mathcal{X} \to [0,1]\)

\[
\left| \frac{1}{n} \sum_{i=1}^{n} q(x_i) - \frac{1}{m} \sum_{i=1}^{m} q(M(x)_i) \right| \leq O \left(\frac{\sqrt{\log|\mathcal{X}| \cdot \log(1/\delta) \cdot \log|Q|}}{\varepsilon n} \right)^{1/2}
\]

Problem: computation time \(\text{poly}(n, |\mathcal{X}|, |Q|)\).

- Exponential in dimensionality of data and query family.
- Inherent in the worst case (cf. “Complexity of DP”).
Private Mult. Weights & Dual Query

[Hardt-Rothblum `10, Gaboardi-Gallego Arias-Hsu-Roth-Wu `14]

$$(\varepsilon, \delta)$$-DP $M: \mathcal{X}^n \rightarrow \mathcal{X}^m$ such that $\forall q \in Q$, $q: \mathcal{X} \rightarrow [0,1]$

$$\left| \frac{1}{n} \sum_{i=1}^{n} q(x_i) - \frac{1}{m} \sum_{i=1}^{m} q(M(x)_i) \right| \leq O\left(\frac{\sqrt{\log|\mathcal{X}| \cdot \log(1/\delta) \cdot \log|Q|}}{\varepsilon n} \right)^{1/2}$$

Problem: computation time $\text{poly}(n, |\mathcal{X}|, |Q|)$.

- Exponential in dimensionality of data and query family.
- Inherent in the worst case (cf. “Complexity of DP”).

DualQuery:

- Use integer programming get heuristic runtime $\text{poly}(n, \log |\mathcal{X}|, |Q|)$.
- Privacy doesn’t depend on success of heuristic.
- Proven accuracy a bit worse (exponent $1/3$ instead of $1/2$).
DualQuery Experiments I

![Graphs showing average max error](image1)

Figure 2: Average max error of $(\varepsilon, 0.001)$-private DualQuery on 500,000 3-way marginals versus ε.
Figure 3: Error and runtime of $(1, 0.001)$-private DualQuery on KDD99 versus number of queries.
DualQuery Experiments III

Figure 4: Error and runtime of (1, 0.001)-private DualQuery on 100,000 3-way marginal queries versus number of attributes.

Programming Frameworks for DP

Goal: make it easier for a data custodian or analyst to write programs that are DP, and be confident that they actually are DP.

Common approach (starting with PinQ [McSherry `09]):

• (Small) set of trusted DP subroutines: (Lap, Geo, ExpMech, ...) only channel for info to flow from dataset to rest of program.

• Track privacy budget consumption: using composition of DP, with either a runtime monitor or static analysis.

• Allow “Lipschitz” data transformations: (recursively) track impact on privacy consumption.
Dataset Transformations

• Let \(d(x, x') \) denote distance between datasets \(x, x' \).
 – Number of rows on which they differ for public \(n \) model.
 – \(|x \Delta x'| \) for unknown \(n \) model.

• **Def:** A mapping from datasets to datasets is \(c \)-Lipschitz (aka \(c \)-stable or \(c \)-sensitive) iff
 \[
 \forall x, x' \ d(T(x), T(x')) \leq c \cdot d(x, x').
 \]

• **Lemmas:**
 – If \(M \) is \(\epsilon \)-DP and \(T \) is \(c \)-Lipschitz, then \(M \circ T \) is \(c\epsilon \)-DP.
 – If \(T_1 \) is \(c_1 \)-Lipschitz and \(T_2 \) is \(c_2 \)-Lipschitz, then \(T_2 \circ T_1 \) is \(c_1 c_2 \)-Lipschitz.
Calculate the Lipschitz Constants

- **Per-row transforms (SELECT):**
 \[T((x_1, \ldots, x_n)) = (f(x_1), \ldots, f(x_n)). \]

- **Winsorization:** \(T(x) = \text{remove the bottom and top 20 elts} \)
 (viewing \(x \) and \(T(x) \) as unordered)

- **Subsetting (WHERE):** \(T(x) = \{ r \in x : \pi(r) = \text{true} \} \) (multiset)
 (use unknown \(n \) model)
Partitioning

- "Parallel Composition" Lemma: Let $S_1, ..., S_k$ be disjoint subsets of \mathcal{X} and let $M_1, ..., M_k$ be ε-DP algorithms (for the unknown n model). Then $M(x) = \left(M_1(x|S_1), ..., M_k(x|S_k) \right)$ is ε-DP.

- A "1-Lipschitz" 1-to-k transformation $T(x) = (x|S_1, ..., x|S_k)$.

- Also have 2-to-1 transformations (Union, Intersection, Join).
Tracking Sensitivity

Transformation	Stability
Select\((T, mapper)\) | (1)
Where\((T, predicate)\) | (1)
GroupBy\((T_1, keyselector)\) | (2)
Join\(^*\)(\(T_1, T_2, n, m, keyselector_1, keyselector_2\)) | \((n,m)\)
Intersect\((T_1, T_2)\) | (1,1)
Union\((T_1, T_2)\) | (1,1)
Partition\((T, keyselector, keysList)\) | (1)

Table 1. Transformation stability

Fig. 2. Transformations

<table>
<thead>
<tr>
<th>s</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Input table</td>
</tr>
<tr>
<td>B</td>
<td>(s(A) \times 2)</td>
</tr>
<tr>
<td>C</td>
<td>(s(A) \times 3)</td>
</tr>
<tr>
<td>D</td>
<td>(s(B) \times 5)</td>
</tr>
<tr>
<td>E</td>
<td>(s(C))</td>
</tr>
<tr>
<td>F</td>
<td>(s(C))</td>
</tr>
<tr>
<td>G</td>
<td>(s(D) \times 1 + s(E) \times 4)</td>
</tr>
</tbody>
</table>

Fig. 3. Scaling factors \((s)\)

[from Ebadi & Sands, “Featherweight PinQ”, 2017]
Ektelo Implementation

Plan Authors (non-experts)

Plan Executor

Operator Library

Privacy Engine

Firewall

Privacy Engineers (experts)

D

Client Space

Protected Kernel

[slide from Ashwin Machanavajjhala]
Other Issues in Programming DP

• Multi-relational databases
 – Standard joins have unbounded Lipschitz constant, so need to truncate results or use “local sensitivity” approximations.

• Side-channel attacks
 – Info can be leaked through timing, approx. of real numbers, global state, exceptions, etc.
 – Constrain language & implementation to match model better.

• Verifying DP building blocks or more complex DP algs
 – Specialized programming languages.
 – Annotate programs with types to assist automated verification of DP.
 – Tradeoff between usability and expressiveness.
 – Now can even synthesize DP algorithms from examples!

• Guidance on Privacy Budgeting
 – Next time!

• Choice of Programming Model (e.g. SQL vs. MapReduce vs. R)